CS 173,	Fa	11 2	201	4
Examlet	8,	\mathbf{P}	art	В

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function f defined by

$$f(1) = 5$$

 $f(n) = 3f(n-1) + n^2 \text{ for } n \ge 2$

Express f(n) in terms of f(n-3) (where $n \ge 4$). Show your work and simplify your answer.

Solution:

$$f(n) = 3f(n-1) + n^{2}$$

$$= 3(3f(n-2) + (n-1)^{2}) + n^{2}$$

$$= 3(3(3f(n-3) + (n-2)^{2}) + (n-1)^{2}) + n^{2}$$

$$= 27f(n-3) + 9(n-2)^{2} + 3(n-1)^{2} + n^{2}$$

CS 173,	Fal	11	201	4
Examlet	8,	P	art	\mathbf{B}

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function g defined (for n a power of 3) by

$$g(1) = c$$

$$g(n) = 3g(n/3) + n \text{ for } n \ge 3$$

Express g(n) in terms of $g(n/3^3)$ (where $n \geq 27$). Show your work and simplify your answer.

Solution:

$$g(n) = 3g(n/3) + n$$

$$= 3(3g(n/9) + n/3) + n$$

$$= 3(3(3g(n/27) + n/9) + n/3) + n$$

$$= 27g(n/27) + n + n + n$$

$$= 27g(n/27) + 3n$$

CS 173, Fall 2014 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(10 points) Suppose we have a function T defined (for n a power of 2) by

$$T(4) = c$$

$$T(n) = T(n/2) + n \text{ for } n \ge 8$$

Your partner has already figured out that

$$T(n) = T(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i}$$

Finish finding the closed form for T. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, we need to set $n/2^k = 4$. This means that $n = 4 \cdot 2^k$. So $n = 2^{k+2}$. So $k + 2 = \log n$. So $k = \log n - 2$. Substituting this value into the above equation, we get

$$T(n) = T(n/2^k) + \sum_{i=0}^{k-1} n \frac{1}{2^i} = T(4) + \sum_{i=0}^{\log n - 3} n \frac{1}{2^i}$$

$$= c + n \sum_{i=0}^{\log n - 3} \frac{1}{2^i} = c + n(2 - \frac{1}{2^{\log n - 3}})$$

$$= c + n(2 - \frac{1}{2^{\log n} \cdot 2^{-3}}) = c + n(2 - \frac{8}{2^{\log n}})$$

$$= c + n(2 - \frac{8}{n}) = c + 2n - 8$$