NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $f: \mathbb{Z}^+ \to \mathbb{Z}$  is defined by is defined by

$$f(1) = 5$$
  $f(2) = -5$ 

$$f(n) = 4f(n-2) - 3f(n-1)$$
, for all  $n \ge 3$ 

Use induction to prove that  $f(n) = 2 \cdot (-4)^{n-1} + 3$ 

Proof by induction on n.

Base case(s):

**Solution:** For n = 1,  $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^0 + 3 = 2 \cdot 1 + 3 = 5$ , which is equal to f(1).

For n = 2,  $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^1 + 3 = 2 \cdot (-4) + 3 = -5$ , which is equal to f(2).

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution:

Suppose that  $f(n) = 2 \cdot (-4)^{n-1} + 3$ , for n = 1, 2, ..., k-1, for some integer  $k \ge 3$ 

Rest of the inductive step:

Solution:

Using the definition of f and the inductive hypothesis, we get

$$f(k) = 4f(k-2) - 3f(k-1) = 4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3)$$

Simplifying the algebra,

$$4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3) = 8 \cdot (-4)^{k-3} + 12 - 6 \cdot (-4)^{k-2} - 9$$

$$= -2 \cdot (-4)^{k-2} - 6 \cdot (-4)^{k-2} + 3$$

$$= -8 \cdot (-4)^{k-2} + 3 = 2 \cdot (-4)^{k-1} + 3$$

So  $f(k) = 2 \cdot (-4)^{k-1} + 3$ , which is what we needed to prove.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $f: \mathbb{Z}^+ \to \mathbb{Z}^+$  is defined by:

$$f(1) = 3$$
  $f(2) = 7$ 

$$f(n) = f(n-1) + 2f(n-2)$$
, for all  $n \ge 3$ 

Use induction to prove that  $f(n) \leq 3^n$ 

Proof by induction on n.

Base case(s):

### Solution:

For n = 1, f(n) = 3 and  $3^n = 3$ , so  $f(n) \le 3^n$ .

For 
$$n = 2$$
,  $f(n) = 7$  and  $3^n = 3^2 = 9$ , so  $f(n) \le 3^n$ .

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

## Solution:

Suppose that  $f(n) \leq 3^n$ , for n = 1, 2, ..., k - 1, for some integer  $k \geq 3$ .

Rest of the inductive step:

### **Solution:**

By the inductive hypothesis, we know that  $f(k-1) \leq 3^{k-1}$  and  $f(k-2) \leq 3^{k-2}$ . So, using these two inequalities plus the definition of f, we get:

$$f(k) = f(k-1) + 2f(k-2) \le 3^{k-1} + 2 \cdot 3^{k-2}$$

But then

$$3^{k-1} + 2 \cdot 3^{k-2} \le 3^{k-1} + 2 \cdot 3^{k-1} = 3 \cdot 3^{k-1} = 3^k$$

So  $f(k) \leq 3^k$ , which is what we needed to show.

**NETID:** 

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $P: \mathbb{N} \to \mathbb{N}$  is defined by

$$P(0) = 2$$
  $P(1) = 1$ 

$$P(n) = P(n-1) + 6P(n-2)$$
, for all  $n \ge 2$ 

Use induction to prove that  $P(n) = 3^n + (-2)^n$ 

Proof by induction on n.

Base case(s):

### Solution:

$$n = 0$$
:  $P(0) = 2$ . Also  $3^n + (-2)^n = 3^0 + (-2)^0 = 1 + 1 = 2$ . So the claim holds at  $n = 0$ .

$$n=1$$
:  $P(1)=1$ . Also  $3^n+(-2)^n=3^1+(-2)^1=3-2=1$ . So the claim holds at  $n=1$ .

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

## Solution:

Suppose that  $P(n) = 3^n + (-2)^n$  for n = 0, 1, ..., k - 1, for some integer  $k \ge 2$ .

Rest of the inductive step:

#### **Solution:**

$$P(k) = P(k-1) + 6P(k-2)$$
 by the definition of P  

$$= (3^{k-1} + (-2)^{k-1}) + 6(3^{k-2} + (-2)^{k-2})$$
 by the inductive hypothesis  

$$= 3^{k-1} + (-2)^{k-1} + 6 \cdot 3^{k-2} + 6 \cdot (-2)^{k-2}$$
  

$$= 3^{k-1} + (-2)^{k-1} + 2 \cdot 3^{k-1} - 3 \cdot (-2)^{k-1}$$
  

$$= 3 \cdot 3^{k-1} - 2 \cdot (-2)^{k-1}$$
  

$$= 3^k + (-2)^k$$

So  $P(k) = 3^k + (-2)^k$ , which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $g: \mathbb{N} \to \mathbb{R}$  is defined by

$$g(0) = 0 g(1) = \frac{4}{3}$$

$$g(n) = \frac{4}{3}g(n-1) - \frac{1}{3}g(n-2), \text{ for } n \ge 2$$

Use induction to prove that  $g(n) = 2 - \frac{2}{3^n}$ 

Proof by induction on n.

Base case(s):

**Solution:** n = 0:  $2 - \frac{2}{3^n} = 2 - \frac{2}{1} = 0 = g(0)$ 

$$n = 1$$
:  $2 - \frac{2}{3^n} = 2 - \frac{2}{3} = \frac{4}{3} = g(1)$ 

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

**Solution:** Suppose that  $g(n) = 2 - \frac{2}{3^n}$ , for  $n = 0, 1, \dots, k - 1$  for some integer  $k \ge 2$ .

Inductive Step:

**Solution:** We need to show that  $g(k) = 2 - \frac{2}{3^k}$ 

$$g(k) = \frac{4}{3}g(k-1) - \frac{1}{3}g(k-2)$$

$$= \frac{4}{3}\left(2 - \frac{2}{3^{k-1}}\right) - \frac{1}{3}\left(2 - \frac{2}{3^{k-2}}\right)$$

$$= \frac{8}{3} - \frac{8}{3^k} - \frac{2}{3} + \frac{2}{3^{k-1}}$$

$$= \frac{6}{3} - \frac{8}{3^k} + \frac{6}{3^k}$$

$$= 2 - \frac{2}{3^k}.$$

[by the def,  $k \geq 2$ ]

[Inductive Hypothesis]

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $f: \mathbb{N} \to \mathbb{Z}$  is defined by

$$f(0) = 1$$
  $f(1) = -5$ 

$$f(n) = -7f(n-1) - 10f(n-2)$$
, for  $n \ge 2$ 

Use induction to prove that  $f(n) = (-1)^n \cdot 5^n$ 

Proof by induction on n.

Base case(s):

**Solution:**  $f(0) = 1 = (-1)^0 \cdot 5^0$  and  $f(1) = -5 = (-1)^1 \cdot 5^1$ .

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

**Solution:** Suppose that  $f(n) = (-1)^n * 5^n$  for n = 0, 1, ..., k - 1, for some integer  $k \ge 2$ .

Rest of the inductive step:

**Solution:** From the inductive hypothesis, we know that  $f(k-1) = (-1)^{k-1} * 5^{k-1}$  and  $f(k-2) = (-1)^{k-2} * 5^{k-2}$ 

So then we have

$$f(k) = -7 \cdot f(k-1) - 10 \cdot f(k-2)$$

$$= -7 \cdot (-1)^{k-1} * 5^{k-1} + -10 \cdot (-1)^{k-2} * 5^{k-2}$$

$$= 7 \cdot (-1)^k * 5^{k-1} - 10 \cdot (-1)^k * 5^{k-2}$$

$$= 7 \cdot (-1)^k * 5^{k-1} - 2 \cdot (-1)^k * 5^{k-1}$$

$$= 5 \cdot (-1)^k * 5^{k-1} = 5 \cdot (-1)^k * 5^k$$

So  $f(k) = 5 \cdot (-1)^k * 5^{k-1} = (-1)^k * 5^k$  which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Suppose that  $f: \mathbb{Z}^+ \to \mathbb{Z}$  is defined by

$$f(1) = 0$$
  $f(2) = 12$ 

$$f(n) = 4 \cdot f(n-1) - 3 \cdot f(n-2)$$
, for  $n \ge 3$ 

Use induction to prove that  $f(n) = 2 \cdot 3^n - 6$ 

Proof by induction on n.

Base case(s):

**Solution:** For n=1, f(1)=0 and  $2\cdot 3^n-6=2\dot 3-6=0$ . So the claim is true.

For n = 2, f(2) = 12 and  $2 \cdot 3^n - 6 = 2\dot{3}^2 - 6 = 18 - 6 = 12$ . So the claim is true.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

**Solution:** Suppose that  $f(n) = 2 \cdot 3^n - 6$  for n = 1, 2, ..., k - 1 for some positive integer  $k \ge 3$ .

Rest of the inductive step:

**Solution:**  $f(k) = 4 \cdot f(k-1) - 3 \cdot f(k-2)$  by the definition of f.

So  $f(k) = 4 \cdot (2 \cdot 3^{k-1} - 6) - 3 \cdot (2 \cdot 3^{k-2} - 6)$  by the inductive hypothesis.

So 
$$f(k) = 8 \cdot 3^{k-1} - 24 - 6 \cdot 3^{k-2} + 18 = 8 \cdot 3^{k-1} - 2 \cdot 3^{k-1} - 6 = 6 \cdot 3^{k-1} - 6 = 2 \cdot 3^k - 6$$

So  $f(k) = 2 \cdot 3^k - 6$  which is what we needed to show.