CS 173, Fa		NE	ETII	D:								
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
1. (5 points) Chec	ck all boxes that	corre	ectly	chara	cteriz	e this relati	on on	the se	et $\{A,$	B, C, I	D, E,	F
A ->	$C \longrightarrow E$		Refle	exive:		Irreflex	ive:		$\sqrt{}$			

Symmetric:

Transitive:

2

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Antisymmetric:

Solution: reflexive, antisymmetric, transitive

 $B \longrightarrow D \longleftarrow F$

3. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lfloor x \rfloor = \lfloor y \rfloor$. Give five members of the equivalence class [13].

Solution: 13, 13.1, 13.7, 13.14159, 13.8 [many similar numbers would work here]

\mathbf{CS}	173,	Fal	1	201	4
Exa	\mathbf{mlet}	4,	P	art	\mathbf{B}

NETID:		

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

Solution: all pairs of elements must be comparable. That is, for any elements x and y in A, either xRy or yRx.

3. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(x,y)\sim(p,q)$ if and only |x|+|y|=|p|+|q|. List three members of [(2,3)].

Solution: (2,3), (-2,3), (1, -4)

CS 173,	Fa	11	201	4
Examlet	4,	F	Part	\mathbf{B}

NETID:

FIRST: LAST:

Discussion:

Thursday

3

 $\mathbf{2}$

5 Friday

9

10

11 12

 $1 \quad 2$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

4

Reflexive:

Irreflexive:

 $\sqrt{}$

Symmetric:

Antisymmetric:

: ___

Transitive:

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

Solution: For any $x, y \in A$, if xRy and yRx, then x = y. Or for any $x, y \in A$, if xRy and $x \neq y$, then $y \not Rx$.

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if gcd(a,b) > 1. Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Consider 2, 6, and 3. Then gcd(2,6) > 1 and gcd(6,3) > 1, but gcd(2,3) = 1.

\mathbf{CS}	173,	Fa	11	201	4
Exa	\mathbf{mlet}	4,	P	art	В

NETID:	NETID:			
--------	--------	--	--	--

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: reflexive, symmetric, transitive

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "touches" relation T on J by (a,b)T(c,d) if and only if a=d or b=c. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Consider (1, 2), (2, 3), and (3, 4). Then (1, 2)T(2, 3) and (2, 3)T(3, 4), but not (1, 2)T(3, 4).