CS 173, Fall 2014 Examlet 4, Part A		NETID:								
FIRST:						$ $ LAST:				
Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2										

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

 $(a, b)T(p, q)$ if and only if ab | p

Working directly from the definition of divides, prove that T is transitive.

Solution: Let (a, b) , (p, q) , and (m, n) be elements of A. Suppose that $(a, b)T(p, q)$ and $(p, q)T(m, n)$. By the definition of T, this means that $ab \mid p$ and $pq \mid m$.

By the definition of divides, we then have $abx = p$ and $pqy = m$, for some integers x and y. Substituting the first equation into the second, we get $(abx)qy = m$. That is $(ab)(xqy) = m$. Since x, y, and q are all integers, so is xqy. So this implies that $ab \mid m$. So $(a, b)T(m, n)$, which is what we needed to show.

CS 173, Fall 2014 Examlet 4, Part A			NETID:								
FIRST:					$ $ LAST:						
Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2											

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

 $(x, y)T(p, q)$ if and only if $(xy)(p + q) = (pq)(x + y)$

Prove that T is transitive.

Solution: Let (a, b) , (p, q) , and (m, n) be elements of A. Suppose that $(a, b)T(p, q)$ and $(p, q)T(m, n)$. By the definition of T, this means that $(xy)(p+q) = (pq)(x+y)$ and $(pq)(m+n) = (mn)(p+q)$

Since $m+n$ is positive, we can divide both sides by it, to get $(pq) = (mn)(p+q)/(m+n)$. Substituting this into the first equation, we get

$$
(xy)(p+q) = (mn)(p+q)/(m+n) \times (x+y)
$$

Multiplying both sides by $(m + n)$, we get

$$
(xy)(p+q)(m+n) = (mn)(p+q)(x+y)
$$

Since $(p+q)$ is positive, we can cancel it from both sides to get

$$
(xy)(m+n) = (mn)(x+y)
$$

By the definition of T, this means that $(a, b)T(m, n)$, which is what we needed to show.

CS 173, Fall 2014 Examlet 4, Part A NETID:

FIRST: $||\text{LAST:}$

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Recall how to multiply a real number α by a 2D point $(x, y) \in \mathbb{R}^2$: $\alpha(x, y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

 $(x, y) \gg (p, q)$ if and only if there exists a real number $\alpha \geq 1$ such that $(x, y) = \alpha(p, q)$.

Prove that \gg is antisymmetric.

Solution: Let (x, y) and (p, q) be elements of A. Suppose that $(x, y) \gg (p, q)$ and $(p, q) \gg (x, y)$.

By the definition of \gg , there are real numbers $\alpha \geq 1$ and $\beta \geq 1$ such that $(x, y) = \alpha(p, q)$ and $(p, q) = \beta(a, b).$

Substituting the second equation into the first, we get $(x, y) = \alpha \beta(x, y)$. This means that $\alpha \beta = 1$. Since $\alpha \ge 1$ and $\beta \ge 1$, this implies that $\alpha = \beta = 1$. So therefore $(x, y) = (p, q)$, which is what we needed to show.

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

 $(x, y)T(p, q)$ if and only if $x \leq p$ and $xy \leq pq$

Prove that T is antisymmetric.

Solution: Let (x, y) and (p, q) be elements of A. Suppose that $(x, y)T(p, q)$ and $(p, q)T(x, y)$.

By the definition of T, $(x, y)T(p, q)$ implies that $x \leq p$ and $xy \leq pq$.

Similarly $(p, q)T(x, y)$ implies that that $p \leq x$ and $pq \leq xy$.

Since $x \le p$ and $p \le x$, $x = p$. Since $xy \le pq$ and $pq \le xy$, $xy = pq$.

Notice that x and o are positive, by the definition of A. So $x = p$ and $xy = pq$ implies that $y = q$.

We now know that $x = p$ and $y = q$. So therefore $(x, y) = (p, q)$, which is what we needed to show.