CS 173, Fall 2014 Examlet 4, Part A		NETID:										
FIRST:					LA	ST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(a,b)T(p,q) if and only if $ab \mid p$

Working directly from the definition of divides, prove that T is transitive.

Solution: Let (a, b), (p, q), and (m, n) be elements of A. Suppose that (a, b)T(p, q) and (p, q)T(m, n). By the definition of T, this means that $ab \mid p$ and $pq \mid m$.

By the definition of divides, we then have abx = p and pqy = m, for some integers x and y. Substituting the first equation into the second, we get (abx)qy = m. That is (ab)(xqy) = m. Since x, y, and q are all integers, so is xqy. So this implies that $ab \mid m$. So (a, b)T(m, n), which is what we needed to show.

CS 173, Fall 2014 Examlet 4, Part A		NE	TII):								
FIRST:					LA	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if (xy)(p+q) = (pq)(x+y)

Prove that T is transitive.

Solution: Let (a, b), (p, q), and (m, n) be elements of A. Suppose that (a, b)T(p, q) and (p, q)T(m, n). By the definition of T, this means that (xy)(p+q) = (pq)(x+y) and (pq)(m+n) = (mn)(p+q)

Since m + n is positive, we can divide both sides by it, to get (pq) = (mn)(p+q)/(m+n). Substituting this into the first equation, we get

$$(xy)(p+q) = (mn)(p+q)/(m+n) \times (x+y)$$

Multiplying both sides by (m+n), we get

$$(xy)(p+q)(m+n) = (mn)(p+q)(x+y)$$

Since (p+q) is positive, we can cancel it from both sides to get

$$(xy)(m+n) = (mn)(x+y)$$

By the definition of T, this means that (a, b)T(m, n), which is what we needed to show.

CS 173, Fall 2014 Examlet 4, Part A NETID:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Recall how to multiply a real number α by a 2D point $(x, y) \in \mathbb{R}^2$: $\alpha(x, y) = (\alpha x, \alpha y)$.

Let $A = \mathbb{R}^+ \times \mathbb{R}^+$, i.e. pairs of positive real numbers.

Define a relation \gg on A as follows:

FIRST:

 $(x, y) \gg (p, q)$ if and only if there exists a real number $\alpha \ge 1$ such that $(x, y) = \alpha(p, q)$.

Prove that \gg is antisymmetric.

Solution: Let (x, y) and (p, q) be elements of A. Suppose that $(x, y) \gg (p, q)$ and $(p, q) \gg (x, y)$.

By the definition of \gg , there are real numbers $\alpha \ge 1$ and $\beta \ge 1$ such that $(x, y) = \alpha(p, q)$ and $(p, q) = \beta(a, b)$.

Substituting the second equation into the first, we get $(x, y) = \alpha \beta(x, y)$. This means that $\alpha \beta = 1$. Since $\alpha \ge 1$ and $\beta \ge 1$, this implies that $\alpha = \beta = 1$. So therefore (x, y) = (p, q), which is what we needed to show.

CS 173, Fall 2014 Examlet 3, Part A		NE	TII):								
FIRST:				LA	AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x, y)T(p, q) if and only if $x \leq p$ and $xy \leq pq$

Prove that T is antisymmetric.

Solution: Let (x, y) and (p, q) be elements of A. Suppose that (x, y)T(p, q) and (p, q)T(x, y).

By the definition of T, (x, y)T(p, q) implies that $x \leq p$ and $xy \leq pq$.

Similarly (p,q)T(x,y) implies that that $p \leq x$ and $pq \leq xy$.

Since $x \le p$ and $p \le x$, x = p. Since $xy \le pq$ and $pq \le xy$, xy = pq.

Notice that x and o are positive, by the definition of A. So x = p and xy = pq implies that y = q.

We now know that x = p and y = q. So therefore (x, y) = (p, q), which is what we needed to show.