NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

$$A = \{(a, b) : (a, b) \in \mathbb{R}^2, a = 3 - b^2\}$$

$$B = \{(x, y) : (x, y) \in \mathbb{R}^2, |x| \ge 1 \text{ or } |y| \ge 1\}$$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

Solution: Suppose that (a,b) is an element of A. Then, by the definition of A, $(a,b) \in \mathbb{R}^2$ and $a=3-b^2$.

Consider two cases, based on the magnitude of b:

Case 1: $|b| \ge 1$. Then (a, b) is an element of B. (Because it satisfies one of the two conditions in the OR.)

Case 2: |b| < 1. Then $b^2 < 1$. Then $a = 3 - b^2 > 3 - 1 = 2$. So $|a| \ge 1$, which means that (a, b) is an element of B.

So (a, b) is an element of B in both cases, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

$$A = \{(x, y) \in \mathbb{Z}^2 \mid 2xy + 6y - 5x - 15 \ge 0\}$$

$$B = \{(a, b) \in \mathbb{Z}^2 \mid a \ge 0\}$$

$$C = \{ (p, q) \in \mathbb{Z}^2 \mid q \ge 0 \}$$

Prove that $(A \cap B) \subseteq C$.

Solution: Suppose that (x, y) is an element of $(A \cap B)$. This means that (x, y) is an element of A and (x, y) is an element of B. So $2xy + 6y - 5x - 15 \ge 0$ and $x \ge 0$, by the definitions of A and B.

Notice that 2xy + 6y - 5x - 15 = (x+3)(2y-5). So $(x+3)(2y-5) \ge 0$. We know that x+3 is positive because $x \ge 0$. So we must have $(2y-5) \ge 0$.

Now, if $(2y-5) \ge 0$, then $2y \ge 5$. So $y \ge \frac{5}{2}$. So $y \ge 0$. This means that (x,y) is an element of C which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

 $A = \{(x, x^2) : x \in \mathbb{R} \text{ and } x \ge 2\}$

 $B = \{(3p - 2, p) : p \in \mathbb{R}\}$

 $C = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$

Prove that $A \cap B \subseteq C$.

Solution 1: Let (x, y) be an element of $A \cap B$. Then (x, y) is an element of A and also an element of B. So, by the definition of A, $x \ge 2$ and $y = x^2$. By the definition of B, x = 3y - 2.

Since $y = x^2$ and $x \ge 2$, $y \ge 4$. Since x = 3y - 2, $x \ge 3 \cdot 3 - 2 = 10$. So $x \ge 0$. Therefore, (x, y) is an element of C, which is what we needed to show.

Comments: The above solution does work, but it's not very insightful: $A \cap B$ is the empty set! As you can probably guess, this isn't what I intended when I wrote the problem. Here's another approach to the problem, based on that observation.

Solution 2: Let (x, y) be an element of $A \cap B$. Then (x, y) is an element of A and also an element of B. So, by the definition of A, $x \ge 2$ and $y = x^2$. By the definition of B, x = 3y - 2.

Since $y = x^2$ and x = 3y - 2, $x = 3x^2 - 2$. So $2 = 3x^2 - x = x(3x - 1)$.

But also notice that since $x \ge 2$ and $y = x^2$, $y \ge 4$. So $x \ge 3 \cdot 4 - 2 = 10$. And therefore $3x - 1 \ge 29$.

Combining the two, we get $2 = 3x^2 - x \ge 10 \cdot 29 = 290$ But $2 \ge 290$ is impossible, so this supposed element (x, y) can't exist.

Therefore $A \cap B$ is the empty set, so it's vacuously true that $A \cap B \subseteq C$.

Comments: Or you could have used the quadratic formula, if you remember it better than I do.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

$$A = \{(x, y) \in \mathbb{R}^2 \mid x = |3y + 5| \}$$

$$B = \{(p,q) \in \mathbb{Z}^2 \mid 2p + q \equiv 3 \pmod{7} \}$$

Prove that $A \cap \mathbb{Z}^2 \subseteq B$.

Use the following definition of congruence mod k: if s, t, k are integers, k positive, then $s \equiv t \pmod{k}$ if and only if s = t + nk for some integer n.

Solution: Let (x,y) be an element of $A \cap \mathbb{Z}^2$. Then (x,y) is an element of A and, also, both x and y are integers.

By the definition of Z, $x = \lfloor 3y + 5 \rfloor$. Since y is an integer, 3y + 5 must also be an integer. So |3y + 5| = 3y + 5. Therefore, x = 3y + 5.

Now, consider 2x + y.

$$2x + y = 2(3y + 5) + y = 7y + 10 = 7(y + 1) + 3$$

y+1 is an integer, since y is an integer. So this means that $2x+y\equiv 3\pmod 7$. Therefore, (x,y) is an element of B, which is what we needed to show.