	CS 173, Fall 2014 Examlet 12, Part B	NE	ETII	D:								
	FIRST:				LA	ST:						
	Discussion: Thursday	2	3	4	5	Friday	9	10	11	12	1	2
and	(a) (9 points) Suppose that A is d/or notation, state the conditions								Usin	g preci	ise la	nguage
P.	Solution: P cannot contain the e	empty	set.	Ever	y eler	nent of A m	ust be	elong t	to exac	ctly on	e elei	ment of
bel	The second condition is frequently long some element of P , and two d	_			_			at is,	every	elemer	nt of	A must
	(b) (6 points) Check the (single) h	oox tl	hat b	est cl	narac	terizes each i	item.					
	If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$ then $f(17)$ is		Ol	ne or		integer [a se		itegers ver set	V	/]
	Pascal's identity states that $\binom{n}{k}$ is equal to $\binom{n-1}{k}$	$) + (\frac{1}{2})$	$\begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$			$\binom{n-1}{k} + \binom{n-1}{k+1}$	<u>+</u>)		$\binom{n-1}{k}$	$\Big)+inom{n_{-}}{k}$	-2)	
	$\{\{a,b\},c\} = \{a,b,c\}$		True	,		False $\sqrt{}$						

	CS 173, Fa Examlet 12		NE	TII	D:								
	FIRST:				LAST:								
	Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
	$f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ b $T = \{ f(x, y) \mid (x, y) \mid (x, y) \in \mathbb{R}^2 \}$		(x,y) =	= {(<i>p</i>	$,q)\in$	\mathbb{R}^2	$x^2 + y^2 = p^2$	$q^2 + q^2$	}				
(a) (6 points) Answer the following questions:													
	$f(0,0) = \{(0,0)\}$ Describe (at a high level) the elements of $f(0,36)$: the circle centered on the origin with radius 6												
											s 6.		
The cardinality of (aka the number of elements in) T is: infinite													
(b)	(7 points) Is T a partition of \mathbb{R}^2 ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.												
	Solution: Yes. 7 origin) overlaps a	- *								cles (p	olus th	e dot	at the
(c)	(2 points) Check	the (single) hov	that	hest	char	acteri	zes each iter	n					

true for all sets false for all sets

 $\mathbb{P}(A) \cap \mathbb{P}(B) = \emptyset$

true if $A \cap B = \emptyset$

CS 173,	Fall	2014	
Examlet	12,	Part	В

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Graph G is at right. V is the set of nodes in G.

Define $f: V \to \mathbb{P}(V)$ by $f(p) = \{n \in V : \deg(n) < \deg(p)\}$, where $\deg(n)$ is the degree of node n. Let $P = \{f(p) \mid p \in V\}$.

(a) (6 points) Fill in the following values:

$$f(A) = \{C\}$$

$$f(C) = \emptyset$$

$$P = \{\emptyset, \{C\}\{A, B, C, E\}, \{A, B, C, E, F\}\}\$$

(b) (7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

Solution: No. There is partial overlap between elements of P, P contains the empty set and node D is not in any of the elements of P (all bad).

(b) (2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(\emptyset)$

Ø

 $\{\emptyset\}$

 $\sqrt{}$

 $\{\{\emptyset\}\}$

 $\{\emptyset,\{\emptyset\}\}$

CS 173, Fall 2014 Examlet 12, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Graph G is at right.

V is the set of nodes.

E is the set of edges.

ab (or ba) is the edge between a and b.

Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$.

(a) (6 points) Fill in the following values:

$$|E| = 10$$

$$f(d) = \{gd\}$$

$$f(h) = \{bh, ch, eh, fh\}$$

(b) (7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

Solution: T is not a partition of E. T does not contain the empty set (good) and each edge in E is in some member of T (good). However, each edge in E is in two members of T, so there is partial overlap among the members of T (bad).

(c) (2 points) Check the (single) box that best characterizes each item.

For any integers n and k $(n \ge k \ge 0)$, $\binom{n}{k} = \binom{n}{n-k}$.

True

 $\sqrt{}$

False