CS 173, Fall 2014 Examlet 11, Part B NETID:								
FIRST:	LAST:							
Discussion: Thursday 2 3 4	5 Friday 9 10 11 12 1 2							
(15 points) Check the (single) box that best cha	racterizes each item.							
The running time of the Towers of Hanoi solver $\Theta(\log n)$	$\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(2^n)$ $\sqrt{}$							
is recursively defined by $T(1) = d$ and	T(n/2) + cn $3T(n/2) + cn$ $$ $T(n/2) + cn$ $4T(n/2) + c$ $$							
with n nodes requires $\Theta(2^n)$ steps.	oven true proven false ot known							
Algorithm A takes n^5 time and Algorithm B takes 2^n time. On one input, A takes x time and B takes y time. How long will each algorithm take if I double the input size? A: $32x$, 3								
If a yes/no problem is in NP, a "yes" answer always has a succinct justification.	true $\sqrt{}$ false $\overline{}$ not known $\overline{}$							

CS 173, Fall 2014 Examlet 11, Part B NETID:										
FIRST: LAST:										
Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2										
(15 points) Check the (single) box that best characterizes each item.										
The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$ and $T(n)=$ $2T(n-1)+c$ $\sqrt{} 2T(n-1)+cn$ $2T(n/2)+c$ $2T(n/2)+cn$										
Problems in NP need exponential time proven true proven false not known $\sqrt{}$										
The running time of mergesort is $O(n^3)$. True $\boxed{\hspace{0.1cm}}$ False $\boxed{\hspace{0.1cm}}$										
n^{log_23} grows faster than n^2 slower than n^2 at the same rate as n^2										
It takes exponential time to determine whether a propositional logic expression can be made true by picking the right true/false values for its propositional variables (e.g. p, q, r). not known $\sqrt{}$										

CS 173, Fa	NETID:												
FIRST:		LAST:											
Discussion:	Thursday	2	3	4	5	Frida	ay	9	10	11	12	1	2
(15 points) Check	the (single) box	that	best	chara	acter	izes each	n item	1.					
The solution to the Hanoi puzzle with requires $\Theta(2^n)$ sto	n n disks	roven	true			proven	false			not k	knowi	n	
The running time	e of mergesort			$\Theta(i)$	(n) n^2			$\log r$ $\Theta(2^r$	_	✓ 			
Problems in class require exponenti		NP)		ne alw	ever rays	✓		netir kno					
T(1) = d $T(n) = 3T(n/2) - 3T(n/2$	+ n			$\Theta(r)$	n) $n^{\log_3 2}$			$\Theta(n \log n)$	- ,			$\Theta(n^2)$ $\Theta(2^n)$	
The Marker Malcan be solved in time.	~ -	prov	en tr	ue [prov	en fal	lse		no	t kno	wn [√

FIRST:					LAST:								
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2	
(6 points) Fill in	the missing bits	of the	e recu	ırsive	algo	ithm for so	lving	the T	owers	of Han	oi pu	ızzle	
hanoi(A,B,C)	pegs, $d_1, d_2 \dots d_n$: disk	s) \	\ ma	ove n	disks from	peg A	to pe	g B				
	move d_1 from A	to B											
else		he	noi(/	1 C I	2 4	\ldots, d_{n-1}							
		116	inor(7	1,0,1	σ, α_1, \ldots	\ldots, a_{n-1}							
move	d_n from A to B	he	moi/(7 R /	\	\ldots, d_{n-1}							
		117	11101(\cup,\mathbf{D},F	$1, a_1, .$	\ldots, a_{n-1}							
(9 points) Check	the (single) boy	that k	nost d	hara	cteriz	os oach itor	n						
(5 points) Check	the (single) box	UIIAU K	JCSU C	пага	C (C112	cs cach her	11.						
Problems in class		NP) o	ean	ne	ever	S	ometi	mes					
be solved in expo	onential time			alw	vays	$\sqrt{}$ n	ot kn	own					
		0.		1	- 4	a. 🗔			, [
Karatsuba's integ	$\Theta(n)$	n²)]	$\Theta(n)$	3)	($\Theta(n \log n)$	g(n)				
multiplication alg	gorithm $\Theta(n)$	n^{log_23}		′	$\Theta(n$	log_32)	($\Theta(2^n)$					
Merging two so lists of numbers	rted $O(\log n)$			O(n)) (O(n	$\log n$] ($O(n^2)$			