CS 173, Fall 2014 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2:

$$T(4) = 7 T(n) = 5T\left(\frac{n}{2}\right) + n$$

- (a) The height: $\log_2(n) 2$
- (b) The number of leaves (please simplify): $5^{\log_2(n)-2} = \frac{1}{25} 5^{\log_2(n)} = \frac{1}{25} 5^{\log_5 n \log_2 5} = \frac{1}{25} n^{\log_2 5}$
- (c) Value in each node at level k: $\frac{n}{2^k}$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $2^{n} + 3^{n}$

 n^3

 $100\log n$

 3^{31}

 $3n\log(n^3)$

7n! + 2

173n - 173

 $3^{31} \mid 100 \log n \mid 173n - 173 \mid 3n \log(n^3) \mid n^3 \mid 2^n + 3^n \mid 7n! + 2$

CS 173, Fall 2014 Examlet 10, Part B NETID:												
FIRST:					LAS	T:						
Discussion:	Thursday	2	3	4	5]	Friday	9	10	11	12	1	2
This is not true	F. Flitwick clai en $\log(f(x)) \ll$ e. Consider $f(x)$ $f(x) \ll \log(g(x))$	$\log(g) = x$	(x)).	Is this	true?	Briefly ju	ıstify	your a	answer	•		
2. (8 points) Chec	k the (single) be	ox tha	at bes	st char	acteriz	es each it	tem.					
Suppose $f(n)$ is Will $g(n)$ be $O(n)$	(0 () /			ne	0	per	haps	$\sqrt{}$	ye	es		
T(1) = d $T(n) = T(n-1)$	(1) + n	$\Theta(n)$		$\Theta(n^2)$?) <u>v</u>	$\Theta(n \log n)$	$\log n)$		$\Theta(2^n)$)		
T(1) = c $T(n) = 3T(n/3)$)+n	$\Theta(n)$		$\Theta(n^2)$?)	$\Theta(n \log n)$	g n)		$\Theta(2^n)$)		

 $\Theta(2^n)$

neither of these

n!

CS 173, Fall 2014 Examlet 10, Part B

NETID:

FIRST:

LAST:

5 1 $\mathbf{2}$ Discussion: Thursday 3 **Friday** 9 11 $\mathbf{2}$ 4 **10 12**

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7:

$$T(1) = 5 T(n) =$$

- $T(n) = 3T\left(\frac{n}{7}\right) + n^2$
- (a) The height: $\log_7 n$.
- (b) The number of leaves (please simplify): $3^{\log_7 n} = 3^{\log_3 n \log_7 3} = n^{\log_7 3}$
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $3n^2$

 $(10^{10^{10}})n$

 $0.001n^{3}$

 $30\log(n^{17})$

8n! + 18

 $3^n + 11^n$

 $\frac{n \log n}{7}$ $30\log(n^{17})$ $(10^{10^{10}})n$ $0.001n^3$ $3^{n} + 11^{n}$ $3n^2$ 8n! + 18

CS 173, Fall 2014 Examlet 10, Part B
FIRST:

NETID:	

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for f to be O(g).

There are positive reals c and k such that

$$0 \le f(x) \le cg(x)$$

for every $x \geq k$.

2. (8 points) Check the (single) box that best characterizes each item.

Dividing a problem of size n into k subproblems, each of size n/m, has the best big- Θ running time when

$$k < m$$
 $\sqrt{}$ $k = m$

$$k > m$$
 $km = 1$

$$T(1) = d$$

$$T(n) = T(n/2) + c$$

$$\Theta(\log n)$$
 $\sqrt{}$ $\Theta(n)$

$$\Theta(n \log n)$$
 $\Theta(n^2)$

$$n^{1.5}$$
 is

$$\Theta(n^{1.414})$$
 neither of these $\sqrt{}$

Suppose
$$f(n) \ll g(n)$$
.
Will $f(n)$ be $O(g(n))$?