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CS 173, Fall 2014

Examlet 10 Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers n ≥ 2, (2n)! > 2nn!

Base Case(s): At n = 2, (2n)! = 4! = 24. 2nn! = 4 · 2 = 8. So (2n)! > 2nn!

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (2n)! > 2nn! for all n = 2, 3, . . . , k for some integer k ≥ 2.

Inductive Step: Notice that 2k + 1 ≥ 1 because k is positive. And (2k)! > 2kk! by the induction
hypothesis.

So then

(2(k + 1))! = (2k + 2)(2k + 1)(2k)! ≥ (2k + 2)(2k)! > (2k + 2)(2kk!) = (k + 1)2k+1k! = 2k+1(k + 1)!.

So (2(k + 1))! > 2k+1(k + 1)! which is what we needed to show.
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Examlet 10 Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > −1, (1 + x)n ≥ 1 + nx.

Base Case(s): At n = 0, (1 + x)n = (1 + x)0 = 1 and 1 + nx = 1 + 0 = 1. So (1 + x)n ≥ 1 + nx.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (1 + x)n ≥ 1 + nx for any natural number n ≤ k, where k is a natural number.

Inductive Step: By the inductive hypothesis (1 + x)k ≥ 1 + kx. Notice that (1 + x) is positive since
x > −1. So (1 + x)k+1 ≥ (1 + x)(1 + kx).

But (1 + x)(1 + kx) = 1 + x+ kx+ kx2 = 1 + (1 + k)x+ kx2.

And 1 + (1 + k)x+ kx2 ≥ 1 + (1 + k)x because kx2 is non-negative.

So (1 + x)k+1 ≥ (1 + x)(1 + kx) ≥ 1 + (1 + k)x, and therefore (1 + x)k+1 ≥ 1 + (1 + k)x, which is what
we needed to show.
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Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Recall the following fact about real numbers

Triangle Inequality: For any real numbers x and y, |x+ y| ≤ |x|+ |y|.

Use this fact and (strong) induction to prove the following claim:

Claim: For any real numbers x1, x2, . . . , xn (n ≥ 2), |x1+x2+ . . .+xn| ≤ |x1|+ |x2|+ . . .+ |xn|.

Base Case(s): At n = 2, the claim is exactly the Triangle Inequality, which we’re assuming to hold.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that |x1 + x2 + . . .+ xn| ≤ |x1|+ |x2|+ . . .+ |xn| for any list of n real numbers x1, x2, . . . , xn,
where 2 ≤ n ≤ k.

Inductive Step: Let x1, x2, . . . , xk+1 be a list of k + 1 real numbers.

Using the Triangle Inequality, we get

|x1 + x2 + . . .+ xk + xk+1| = |(x1 + x2 + . . .+ xk) + xk+1| ≤ |(x1 + x2 + . . .+ xk)|+ |xk+1|
But, by the inductive hypothesis |(x1 + x2 + . . .+ xk)|+ |xk+1| ≤ |x1|+ |x2|+ . . .+ |xk| ≤ |xk+1|.
Putting these two equations together, we get

|x1 + x2 + . . .+ xk + xk+1| = |(x1 + x2 + . . .+ xk) + xk+1| ≤ (|x1|+ |x2|+ . . .+ |xk|) + |xk+1|.
So |x1 + x2 + . . .+ xk + xk+1| ≤ |x1|+ |x2|+ . . .+ |xk|+ |xk+1|, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n,
n∑

p=1

1√
p
≥

√
n

You may use the fact that
√
n + 1 ≥ √

n for any natural number n.

Base Case(s): At n = 1,
n∑

p=1

1√
p
= 1 Also

√
n = 1. So

n∑

p=1

1√
p
≥

√
n.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that

n∑

p=1

1√
p
≥

√
n for n = 1, 2, . . . , k, for some integer k ≥ 1.

Inductive Step:
k∑

p=1

1√
p
≥

√
k by the inductive hypothesis.

So
k+1∑

p=1

1√
p
=

1√
k + 1

+

k∑

p=1

1√
p
≥ 1√

k + 1
+
√
k =

1 +
√
k
√
k + 1√

k + 1
≥ 1 +

√
k
√
k√

k + 1
=

1 + k√
k + 1

=
√
k + 1

So
k+1∑

p=1

1√
p
≥

√
k + 1, which is what we needed to show.


