NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers $n \geq 2$, $(2n)! > 2^n n!$

Base Case(s): At n = 2, (2n)! = 4! = 24. $2^n n! = 4 \cdot 2 = 8$. So $(2n)! > 2^n n!$

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(2n)! > 2^n n!$ for all n = 2, 3, ..., k for some integer $k \ge 2$.

Inductive Step: Notice that $2k + 1 \ge 1$ because k is positive. And $(2k)! > 2^k k!$ by the induction hypothesis.

So then

 $(2(k+1))! = (2k+2)(2k+1)(2k)! \ge (2k+2)(2k)! > (2k+2)(2^kk!) = (k+1)2^{k+1}k! = 2^{k+1}(k+1)!.$ So $(2(k+1))! > 2^{k+1}(k+1)!$ which is what we needed to show.

|--|

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$.

Base Case(s): At n = 0, $(1 + x)^n = (1 + x)^0 = 1$ and 1 + nx = 1 + 0 = 1. So $(1 + x)^n \ge 1 + nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1+x)^n \ge 1 + nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1+x)^k \ge 1 + kx$. Notice that (1+x) is positive since x > -1. So $(1+x)^{k+1} \ge (1+x)(1+kx)$.

But $(1+x)(1+kx) = 1 + x + kx + kx^2 = 1 + (1+k)x + kx^2$.

And $1 + (1+k)x + kx^2 \ge 1 + (1+k)x$ because kx^2 is non-negative.

So $(1+x)^{k+1} \ge (1+x)(1+kx) \ge 1+(1+k)x$, and therefore $(1+x)^{k+1} \ge 1+(1+k)x$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Recall the following fact about real numbers

Triangle Inequality: For any real numbers x and y, $|x + y| \le |x| + |y|$.

Use this fact and (strong) induction to prove the following claim:

Claim: For any real numbers $x_1, x_2, ..., x_n$ $(n \ge 2), |x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.

Base Case(s): At n = 2, the claim is exactly the Triangle Inequality, which we're assuming to hold. Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$ for any list of n real numbers x_1, x_2, \ldots, x_n , where $2 \le n \le k$.

Inductive Step: Let $x_1, x_2, \ldots, x_{k+1}$ be a list of k+1 real numbers.

Using the Triangle Inequality, we get

$$|x_1 + x_2 + \ldots + x_k + x_{k+1}| = |(x_1 + x_2 + \ldots + x_k) + x_{k+1}| \le |(x_1 + x_2 + \ldots + x_k)| + |x_{k+1}|$$

But, by the inductive hypothesis $|(x_1 + x_2 + \ldots + x_k)| + |x_{k+1}| \le |x_1| + |x_2| + \ldots + |x_k| \le |x_{k+1}|$.

Putting these two equations together, we get

$$|x_1 + x_2 + \ldots + x_k + x_{k+1}| = |(x_1 + x_2 + \ldots + x_k) + x_{k+1}| \le (|x_1| + |x_2| + \ldots + |x_k|) + |x_{k+1}|.$$

So $|x_1 + x_2 + \ldots + x_k + x_{k+1}| \le |x_1| + |x_2| + \ldots + |x_k| + |x_{k+1}|$, which is what we needed to show.

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n.

Base Case(s): At
$$n=1$$
, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1$ Also $\sqrt{n} = 1$. So $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$ for n = 1, 2, ..., k, for some integer $k \ge 1$.

Inductive Step: $\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \sqrt{k}$ by the inductive hypothesis.

Sc

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{k+1}} + \sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \frac{1}{\sqrt{k+1}} + \sqrt{k} = \frac{1+\sqrt{k}\sqrt{k+1}}{\sqrt{k+1}} \ge \frac{1+\sqrt{k}\sqrt{k}}{\sqrt{k+1}} = \frac{1+k}{\sqrt{k+1}} = \sqrt{k+1}$$

So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \ge \sqrt{k+1}$, which is what we needed to show.