Midterm Review

David Holcomb

November 11, 2012

1 Grammar

1.1

Consider the following grammar, with set of non-terminals $\{S, T, R, X\}$ and set of terminals $\{a, b, \epsilon\}$. S is the start symbol.

$$\begin{split} \mathbb{S} &\to XSX \mid T \\ T &\to aRb \mid bRa \\ R &\to XR \mid \epsilon \\ X &\to a \mid b \end{split}$$

This grammar enforces that any string generated has one of the following forms

$$X \dots XaX \dots XbX \dots X$$
 $X \dots XbX \dots XaX \dots X$

where the there are equal number of Xs (possibly 0) on the "oustide" and some arbitrary number of Xs (possibly 0) in the middle. (Each X becomes a single character a or b.) This ensures that any string generated by this grammar is not a palindrome.

1.1.1

Draw parse trees for each of the following strings:

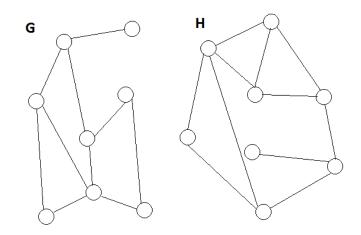
1. ab

2. abb

3. ababbba

2 Graphs

2.1



2.1.1

Are G and H connected?

2.1.2

What are the maximum degrees of G and H?

2.1.3

What are the chromatic numbers of G and H? Justify your answer.

2.1.4

Are G and H isomorphic? Justify your answer.

2.2

If G,H are graphs, here are their respective adjacency matrices:

$$A_{G} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}, A_{H} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

2.2.1

Are G and H connected?

2.2.2

What are the maximum degrees of G and H?

0	6	`	0
Z	- 4	۷.	ភ

What are the chromatic numbers of the G and H? Justify your answer.

2.2.4

Do G and H contain Eulerian circuits? Justify your answer.

2.2.5

Are G and H isomorphic? Justify your answer.

3 Induction

3.1

Let σ_n denote the sum of the digits of n. For example $\sigma_{37} = 10$, $\sigma_{543} = 12$. Prove that $n \equiv \sigma_n \pmod{9}$ using induction. (Hint: What happens if n has a 9 in the singles digit, and we increase n by 1?)

3.2

```
Let the function f:N\to Z be defined by f(0)=1 f(1)=6 \forall n\geq 2, f(n)=6f(n-1)-9f(n-2) Use strong induction on n to prove that \forall n\geq 0, f(n)=(1+n)3^n
```

3.3

3.3.1

Prove that n^0 is $O(n^1)$.

3.3.2

Prove that n^z is $O(n^{z+1})$ for any $z \in \mathbb{N}$.

Recursion Trees 4

4.1

Find a closed form for

$$T(n) = 2T(\frac{n}{3}) + n + 1$$

 $T(n) = 2T(\frac{n}{3}) + n + 1$ T(1) = 2 when n is a power of 3.

4.2

Find a closed form for T(n) = 2T(n-1) + 3T(1) = 3

4.3

Find a closed form for $T(n) = T(\lfloor \sqrt{n} \rfloor) + n$ T(1) = 2

when $n = 2^{(2^k)}$ for some non-negative integer k.

5 Big O

5.1

Order the following functions in increasing (in terms of Big O) order.

$$n^2$$
, $n \log_3^2 n$, $\sqrt{n^5 + \log_2 n}$, $\log_{10} n$, $\log_5 n$, $2^{\log_3 n}$, $(\sqrt{2})^n$

5.2

Find $k \in \mathbb{N}$ such that $n^{\sqrt{2}} \log^2 n$ is $O(n^k)$. Is your bound "tight"?

5.3

Prove that $\sqrt{x^4+6x^2+9}$ is $O(x^2)$. Find a $C,k\geq 0$ such that $\sqrt{x^4+6x^2+9}\leq Cx^2$ for all $x\geq k$.

5.4

Prove that n^3+7n^2 is not $O(n^2)$. Given a $C,k\geq 0$, find an $n\geq k$ such that $n^3+7n^2>Cn^2$.