CS 173: Discrete Structures, Fall 2012 Exam 1 Review

These problems are to help you review for the first midterm. They should not be handed in.

1. Set Operations

Suppose you were given the following sets:

A = {Piano, (Violin, Viola, Cello), Guitar}

B = {(Flute, Piccolo), Cymbals}

 $\mathbf{C} = \{ \text{Piano}, \text{Flute} \}$

D = {(Violin, Viola, Cello), (Flute, Piccolo)}

List the elements of the set or find the values for the following expressions:

- (a) |A|
- (b) $A \cup D$
- (c) $A \cap C$
- (d) $B \cap C$
- (e) A (B C)
- (f) $(B \cap D) \times C$
- (g) $A \times \emptyset$
- (h) $C \times \{\emptyset\}$

2. Counting with sets

In our role-playing game, an evil character may be an elf or a troll, it may be red, green, brown, or black, and it may have scales or hair. A good character may be an elf or a human or a lion, it may be green, brown, or blue, and it has hair or fur. How many different character types do we have?

Suppose we have a 26 character alphabet. How many 6-letter strings start with PRE or end with TH?

3. Euclidean algorithm

Trace the execution of the Euclidean algorithm for computing GCD on the inputs a = 837 and b = 2015. That is, give a table showing the values of the main variables (x, y, r) for each pass through the loop. Explicitly indicate what the output value is.

4. Direct Proof Using Congruence mod k

In the book, you will find several equivalent ways to define congruence mod k. For this problem, use the following definition: for any integers x and y and any positive integer m, $x \equiv y \pmod{m}$ if there is an integer k such that x = y + km.

Using this definition prove that, for all integers a, b, c, p, q where p and q are positive, if $a \equiv b \pmod{p}$ and $c \equiv b \pmod{q}$ and q|p, then $a - 2c \equiv (-b) \pmod{q}$.

5. Equivalence classes

Let $A = \mathbb{R}^{\geq 0} \times \mathbb{R}^{\geq 0} - \{(0,0)\}$, i.e. pairs of non-negative reals in which no more than one of the two numbers is zero.

Consider the equivalence relation \sim on A defined by

$$(x,y) \sim (p,q)$$
 iff $(xy)(p+q) = (pq)(x+y)$

- (a) List four elements of [(3,1)]. Hint: what equation do you get if you set (x,y) to (3,1) and q=2p?
- (b) Give two other distinct equivalence classes that are not equal to [(3,1)].
- (c) Describe the members of [(0,4)].

6. Relation properties

A C C D D	Reflexive:	Irreflexive:	
	Symmetric:	Antisymmetric:	
	Transitive:		
\sim is the relation on $\mathbb R$ such that $x \sim y$ if and only if $xy = 1$	Reflexive:	Irreflexive:	
	Symmetric:	Antisymmetric:	
	Transitive:		
A C	Reflexive:	Irreflexive:	
$E \stackrel{\frown}{\rightleftharpoons} B$ D	Symmetric:	Antisymmetric:	
	Transitive:		

7. Proofs on Relations

(a) Define a relation \sim on the set of all functions from \mathbb{R} to \mathbb{R} by the rule $f \sim g$ if and only if $\exists k \in \mathbb{R}$ such that f(x) = g(x) for every $x \geq k$. Prove that \sim is an equivalence relation.