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These notes cover special properties of planar graphs.

1 Planar graphs

A planar graph is a graph which can be drawn in the plane without any
edges crossing. Some pictures of a planar graph might have crossing edges,
but it’s possible to redraw the picture to eliminate the crossings. For example,
although the usual pictures of K4 and Q3 have crossing edges, it’s easy to
redraw them so that no edges cross. For example, a planar picture of Q3 is
shown below. However, if you fiddle around with drawings of K3,3 or K5,
there doesn’t seem to be any way to eliminate the crossings. We’ll see how
to prove that these two graphs aren’t planar.
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Why should we care? Planar graphs have some interesting mathematical
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properties, e.g. they can be colored with only 4 colors. Also, as we’ll see
later, we can use facts about planar graphs to show that there are only 5
Platonic solids.

There are also many practical applications with a graph structure in which
crossing edges are a nuisance, including design problems for circuits, subways,
utility lines. Two crossing connections normally means that the edges must
be run at different heights. This isn’t a big issue for electrical wires, but
it creates extra expense for some types of lines e.g. burying one subway
tunnel under another (and therefore deeper than you would ordinarily need).
Circuits, in particular, are easier to manufacture if their connections live in
fewer layers.

2 Faces

When a planar graph is drawn with no crossing edges, it divides the plane
into a set of regions, called faces. Each face is bounded by a closed walk called
the boundary of the face. By convention, we also count the unbounded area
outside the whole graph as one face. The degree of the face is the length of
its boundary. For example, in the figure below, the lefthand graph has three
faces. The boundary of face 2 has edges df, fe, ec, cd, so this face has degree
4. The boundary of face 3 (the unbounded face) has edges bd, df, fe, ec, ca, ab,
so face 3 has degree 6.
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The righthand graph above has a spike edge sticking into the middle of
face 1. In such a case, the boundary must traverse the spike twice, i.e. the
boundary of face 1 has edges bf, fe, ec, cd, cd, ca, ab. in which cd is used twice.
So the degree of face 1 in the righthand graph is 7. Notice that the boundary
of such a face is not a cycle (though it contains a cycle).

Suppose that we have a graph with e edges, v vertices, and f faces. We
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know that the Handshaking theorem holds, i.e. the sum of vertex degrees is
2e. For planar graphs, we also have a Handshaking theorem for faces: the
sum of the face degrees is 2e. To see this, notice that a typical edge forms
part of the boundary of two faces, one to each side of it. The exceptions are
edges, such as those involved in a spike, that appear twice on the boundary
of a single face.

Finally, for connected planar graphs, we have Euler’s formula: v−e+f =
2. We’ll prove that this formula works.1

3 Trees

Before we try to prove Euler’s formula, let’s look at one special type of
planar graph: free trees. In graph theory, a free tree is any connected
graph with no cycles. Free trees are somewhat like normal trees, but they
don’t have a designated root node and, therefore, they don’t have a clear
ancestor-descendent ordering to their notes.

A free tree doesn’t divide the plane into multiple faces, because it doesn’t
contain any cycles. A free tree has only one face: the entire plane surrounding
it. So Euler’s theorem reduces to v − e = 1, i.e. e = v − 1. Let’s prove that
this is true, by induction.

Proof by induction on the number of vertices in the graph.

Base: If the graph contains no edges and only a single vertex, the
formula is clearly true.

Induction: Suppose the formula works for all free trees with up
to n vertices. Let T be a free tree with n + 1 vertices. We need
to show that T has n edges.

Now, we find a vertex with degree 1 (only one edge going into
it). To do this start at any vertex r and follow a walk in any
direction, without repeating edges. Because T has no cycles, this
walk can’t return to any vertex it has already visited. So it must

1You can easily generalize Euler’s formula to handle graphs with more than one con-

nected components.
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eventually hit a dead end: the vertex at the end must have degree
1. Call it p.

Remove p and the edge coming into it, making a new free tree T ′

with n vertices. By the inductive hypothesis, T ′ has n− 1 edges.
Since T has one more edge than T ′, T has n edges. Therefore our
formula holds for T .

4 Proof of Euler’s formula

We can now prove Euler’s formula (v − e + f = 2) works in general, for any
connected planar graph.

Proof: by induction on the number of edges in the graph.

Base: If e = 0, the graph consists of a single vertex with a single
face surrounding it. So we have 1 − 0 + 1 = 2 which is clearly
right.

Induction: Suppose the formula works for all graphs with no more
than n edges. Let G be a graph with n + 1 edges.

Case 1: G doesn’t contain a cycle. So G is a free tree and we
already know the formula works for free trees.

Case 2: G contains at least one cycle. Pick an edge p that’s on a
cycle. Remove p to create a new graph G′.

Since the cycle separates the plane into two faces, the faces to
either side of p must be distinct. When we remove the edge p, we
merge these two faces. So G′ has one fewer faces than G.

Since G′ has n edges, the formula works for G′ by the induction
hypothesis. That is v′ − e′ + f ′ = 2. But v′ = v, e′ = e − 1, and
f ′ = f − 1. Substituting, we find that

v − (e − 1) + (f − 1) = 2

So

v − e + f = 2
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5 Some corollaries of Euler’s formula

Corollary 1 Suppose G is a connected planar graph, with v vertices, e edges,

and f faces, where v ≥ 3. Then e ≤ 3v − 6.

Proof: The sum of the degrees of the faces is equal to twice the
number of edges. But each face must have degree ≥ 3. So we
have 3f ≤ 2e.

Euler’s formula says that v − e + f = 2, so f = e − v + 2 and
thus 3f = 3e − 3v + 6. Combining this with 3f ≤ 2e, we get
3e − 3v + 6 ≤ 2e. So e ≤ 3v − 6.

We can also use this formula to show that the graph K5 isn’t planar.
K5 has five vertices and 10 edges. This isn’t consistent with the formula
e ≤ 3v − 6. Unfortunately, this method won’t help us with K3,3, which isn’t
planar but does satisfy this equation.

We can also use this Corollary 1 to derive a useful fact about planar
graphs:

Corollary 2 If G is a connected planar graph, G has a vertex of degree less

than six.

Proof: This is clearly true if G has one or two vertices.

If G has at least three vertices, then suppose that the degree
of each vertex was at least 6. By the handshaking theorem, 2e
equals the sum of the degrees of the vertices, so we would have
2e ≥ 6v. But corollary 1 says that e ≤ 3v − 6, so 2e ≤ 6v − 12.
We can’t have both 2e ≥ 6v and 2e ≤ 6v − 12. So there must
have been a vertex with degree less than six.

If our graph G isn’t connected, the result still holds, because we can apply
our proof to each connected component individually. So we have:

Corollary 3 If G is a planar graph, G has a vertex of degree less than six.
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6 K3,3 is not planar

When all the cycles in our graph have at least four vertices, we can get a
tighter relationship between the numbers of vertices and edges.

Corollary 4 Suppose G is a connected planar graph, with v vertices, e edges,

and f faces, where v ≥ 3. and if all cycles in G have length ≥ 4, then

e ≤ 2v − 4.

Proof: The sum of the degrees of the faces is equal to twice the
number of edges. But each face must have degree ≥ 4 because
all cycles have length ≥ 4. So we have 4f ≤ 2e, so 2f ≤ e.

Euler’s formula says that v − e + f = 2, so e − v + 2 = f , so
2e − 2v + 4 = 2f . Combining this with 2f ≤ e, we get that
2e − 2v + 4 ≤ e. So e ≤ 2v − 4.

This result lets us show that K3,3 isn’t planar. All the cycles in K3,3

have at least four vertices. But K3,3 has 9 edges and 6 vertices, which isn’t
consistent with this formula. So K3,3 can’t be planar.

7 Kuratowski’s Theorem

The two example non-planar graphs K3,3 and K5 weren’t picked randomly.
It turns out that any non-planar graph must contain a subgraph closely
related to one of these two graphs. Specifically, we’ll say that a graph G is
a subdivision of another graph F if the two graphs are isomorphic or if the
only difference between the graphs is that G divides up some of F ’s edges by
adding extra degree 2 vertices in the middle of the edges.

For example, in the following picture, the righthand graph is a subdivision
of the lefthand graph.
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We can now state our theorem precisely.

Claim 1 Kuratowski’s Theorem: A graph is nonplanar if and only if it con-

tains a subgraph that is a subdivision of K3,3 or K5.

This was proved in 1930 by Kazimierz Kuratowski, and the proof is ap-
parently somewhat difficult. So we’ll just see how to apply it.

For example, here’s a graph known as the Petersen graph (after a Danish
mathematician named Julius Petersen).
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This isn’t planar. The offending subgraph is the whole graph, except for
the node B (and the edges that connect to B):
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This subgraph is a subdivision of K3,3. To see why, first notice that the
node b is just subdividing the edge from d to e, so we can delete it. Or,
formally, the previous graph is a subdivision of this graph:
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In the same way, we can remove the nodes A and C, to eliminate unnec-
essary subdivisions:
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Now deform the picture a bit and we see that we have K3,3.
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8 Coloring planar graphs

One application of planar graphs involves coloring maps of countries. Two
countries sharing a border2 must be given different colors. We can turn this
into a graph coloring problem by assigning a graph node to each country.
We then connect two nodes with an edge exactly when their regions share a
border. This graph is called the dual of our original map. Because the maps
are planar, these dual graphs are always planar.

Planar graphs can be colored much more easily than other graphs. For
example, we can prove that they never require more than 6 colors:

Proof: by induction on the number of vertices in G.

Base: The planar graph with just one vertex has maximum degree
0 and can be colored with one color.

Induction: Suppose that any planar graph with k vertices can be
colored with 6 colors. Let G be a planar graph with k+1 vertices.

2Two regions touching at a point are not considered to share a border.
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By Corollary 3, G has a vertex of degree less than 6. Let’s pick
such a vertex and call it v.

Remove some vertex v (and its edges) from G to create a smaller
graph G′. G′ is a planar graph with k vertices. So, by the induc-
tive hypothesis, G′ can be colored with 5 colors.

Because v has less than 6 neighbors, its neighbors are only using
5 of the available colors. So there is a spare color to assign to v,
finishing the coloring of G.

It’s not hard, but a bit messy, to upgrade this proof to show that planar
graphs require only five colors. Four colors is much harder. Way back in
1852, Francis Guthrie hypothesized that any planar graph could be colored
with only four colors, but it took 124 years to prove that he was right. Alfred
Kempe thought he had proved it in 1879 and it took 11 years for another
mathematician to find an error in his proof.

The Four Color Theorem was finally proved by Kenneth Appel and Wolf-
gang Haken at UIUC in 1976. They reduced the problem mathematically, but
were left with 1936 specific graphs that needed to be checked exhaustively,
using a computer program. Not everyone was happy to have a computer
involved in a mathematical proof, but the proof has come to be accepted as
legitimate.

9 Application: Platonic solids

A fact dating back to the Greeks is that there are only five Platonic solids:
cube, dodecahedron, tetrahedron, icosahedron, octahedron. These are con-
vex polyhedra whose faces all have the same number of sides (k) and whose
vertices all have the same number of edges going into them (d).

To turn a Platonic solid into a graph, imagine that it’s made of a stretchy
material. Make a small hole in one face. Put your fingers into that face and
pull sideways, stretching that face really big and making the whole thing
flat. For example, an octahedron (8 triangular sides) turns into the following
graph. Notice that it still has eight faces, one for each face of the original
solid, each with three sides.
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Graphs of polyhedra are slightly special planar graphs. Polyhedra aren’t
allowed to have extra vertices partway along edges, so each vertex in the
graph must have degree at least three. Also, since the faces must be flat and
the edges straight, each face needs to be bounded by at least three edges.
So, if G is the graph of a Platonic solid, all the vertices of G must have the
same degree d ≥ 3 and all faces must have the same degree k ≥ 3.

Now, let’s do some algebra to see why there are so few possibilities for
the structure of such a graph.

By the handshaking theorem, the sum of the vertex degrees is twice the
number of edges. So, since the degrees are equal to d, we have dv = 2e and
therefore

v =
2e

d

By the handshaking theorem for faces, the sum of the face degrees is also
twice the number of edges. That is kf = 2e. So

f =
2e

k

Euler’s formula says that v−e+f = 2, so v+f = 2+e > e. Substituting
the above equations into this one, we get:

2e

d
+

2e

k
> e
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Dividing both sides by 2e:

1

d
+

1

k
>

1

2

If we analyze this equation, we discover that d and k can’t both be larger
than 3. If they were both 4 or above, the left side of the equation would be
≤

1

2
. Since we know that d and k are both ≥ 3, this implies that one of the

two is actually equal to three and the other is some integer that is at least 3.

Suppose we set d to be 3. Then the equation becomes 1

3
+ 1

k
> 1

2
. So

1

k
> 1

6
, which means that k can’t be any larger than 5. Similarly, if k is 3,

then d can’t be any larger than 5.

This leaves us only five possibilities for the degrees d and k: (3, 3), (3, 4),
(3, 5), (4, 3), and (5, 3). Each of these corresponds to one of the Platonic
solids.
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