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This lecture discusses the graph coloring problem (section 9.8 of Rosen).

1 The problem

We’re only going to talk about simple undirected graphs.

Remember that two vertices are adjacent if they are directly connected
by an edge.

A coloring of a graph G assigns a color to each vertex of G, with the
restriction that two adjacent vertices never have the same color. The chro-

matic number of G, written χ(G), is the smallest number of colors needed to
color G.

For example, only three colors are required for this graph:

R G

G B

R

But K4 requires 4:
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2 Computing colorings

For certain classes of graphs, we can easily compute the chromatic number.
For example, the chromatic number of Kn is n, for any n. Notice that we have
to argue two separate things to establish that this is its chromatic number:

• Kn can be colored with n colors.

• Kn cannot be colored with less than n colors

For Kn, both of these facts are fairly obvious. Assigning a different color
to each vertex will always result in a well-formed coloring (though it may be
a waste of colors). Since each vertex in Kn is adjacent to every other vertex,
no two can share a color. So fewer than n colors can’t possibly work.

Similar, the chromatic number for Kn,m is 2. We color one side of the
graph with one color and the other side with a second color.

In general, however, coloring requires exponential time. There’s a couple
specific versions of the theoretical problem. I could give you a graph and
ask you for its chromatic number. Or I could give you a graph and an
integer k and ask whether k colors is enough to be able to color G. These
problems are all “NP-complete” or “NP-hard.” That is, they apparently
require exponential time to compute, even though in some cases it’s easy
to check that their output is correct. (They are exponential if the “P” and
“NP” classes of algorithms are actually different, which is one of the big
outstanding problems in computer science.) So, except for small examples
and special cases, coloring problems can’t be solved exactly.
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3 Why should I care?

However, graph coloring is required for solving a wide range of practical prob-
lems. For example, there is a coloring algorithm embedded in most compilers.
Because the general problem can’t be solved efficiently, the implemented al-
gorithms use limitations or approximations of various sorts so that they can
run in a reasonable amount of time.

For example, suppose that we want to allocate broadcast frequencies to
local radio stations. In the corresponding graph problem, each station is
a vertex and the frequencies are the “colors.” Two stations are connected
by an edge if they are geographically too close together, so that they would
interfere if they used the same frequency. This graph should not be too bad
to color in practice, so long as we have a large enough supply of frequencies
compared to the numbers of stations clustered near one another.

We can model a sudoku puzzle by setting up one vertex for each square.
The colors are the 9 numbers, and some are pre-assigned to certain vertices.
Two vertices are connected if their squares are in the same block or row or
column. The puzzle is solvable if we can 9-color this graph, respecting the
pre-assigned colors.

Probably the oldest sort of coloring problem is coloring the different coun-
tries on a map. In this case, the original map is a graph, in which the regions
are the countries. To set up the coloring problem, we need to convert this to
the dual graph, where each region is a vertex and two regions are connected
by an edge exactly when they share a border.1 In this case, the graph is
planar, which makes coloring much easier to do (see below).

We can model exam scheduling as a coloring problem. The exams for
two courses should not be put at the same time if there is a student who
is in both courses. So we can model this as a graph, in which each course
is a vertex and courses are connected by edges if they share students. The
question is then whether we can color the graph with k colors, where k is the
number of exam times in our schedule.

In the exam scheduling problem, we actually expect the answer to be
“no,” because eliminating conflicts would require an excessive number of

1Two regions touching at a point are not considered to share a border.
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exam times. So the real practical problem is: how few students do we have
to take out of the picture (i.e. give special conflict exams to) in order to be
able to solve the coloring problem with a reasonable value for k. We also
have the option of splitting a course (i.e. offering a scheduled conflict exam)
to simplify the graph.

A particularly important use of coloring in computer science is register
allocation. A large java or C program contains many named variables. But
a computer has a smallish number (e.g. 32) of fast registers which can feed
basic operations such as addition. So variables must be allocated to specific
registers.

The vertices in this coloring problem are variables. The colors are regis-
ters. Two variables are connected by an edge if they are in use at the same
time and, therefore, cannot share a register. As with the exam scheduling
problem, we actually expect the raw coloring problem to fail. The compiler
then uses so-called “spill” operations to break up the dependencies and create
a colorable graph. The goal is to use as few spills as possible.

4 Planar graphs

Planar graphs are an important special case, because they are much easier to
color than some other graphs. Way back in 1852, Francis Guthrie hypothe-
sized that any planar graph could be colored with only four colors. This is, in
fact, correct, but it took a very long time to prove it. Alfred Kempe thought
he had proved it in 1879 and it took 11 years for another mathematician to
find an error in his proof.

It was finally proved by Kenneth Appel and Wolfgang Haken at UIUC
in 1976. They reduced the problem mathematically, but were left with 1936
specific graphs that needed to be checked exhaustively, using a computer
program.

It’s much easier to show that all planar graphs can be 6-colored. Recall
from Monday’s lecture that a planar graph always has a vertex whose degree
is no higher than 5. Using this fact, we can do a simple proof by induction.

Base: The graph with just one vertex can clearly be 6-colored.
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Induction: Suppose that all graphs with ≤ k vertices can be 6-colored.
Let G be a graph with k + 1 vertices. In G, find a vertex v with degree ≤ 5.
Remove v (and its edges) to create a smaller graph G′. G′ can be 6-colored
by the inductive hypothesis. Because v has only 5 neighbors, we can always
choose a color for it which will extend this coloring to a coloring of G.

I have it on good authority that 5-colorability can be proved without a
computer search, but the proof is difficult.

The proof of 6-colorability can be generalized to other types of graphs.
If a graph G has vertices whose degrees are all ≤ D, then G can be colored
with D + 1 colors. This limits what G’s chromatic number could be, but
doesn’t pin it down exactly. It might be that D can be colored with fewer
colors. For example, W8 (recall: 8 vertices in a circle, one in the center) can
be colored with three colors. Alternate two colors around rim of the wheel,
then assign a third color to the central vertex.

5 Greedy coloring

This insight motivates a class of good coloring algorithms for practical ap-
plications, called “greedy” coloring algorithms. We take our graph G and
remove vertices one-by-one, creating a series of smaller and smaller graphs.
The goal is to ensure that each vertex has a low degree when removed. So
we remove low-degree vertices first in hopes that this will simplify the graph
structure around vertices with high degree.

We start by coloring the smallest graph and add the vertices back one-by-
one, each time extending the coloring to the new vertex. If each vertex has
degree ≤ d at the point when it’s added to the graph, then we can complete
the whole coloring with d + 1 colors.

This algorithm is quite efficient. Its output might use more colors than
the optimal coloring, but it apparently works quite well for problems such as
register allocation.
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6 Farewell

Thanks for being in the class. It was great to have you! Hope your finals go
smoothly. And we hope to see you again in some later course.
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