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This lecture surveys facts about graphs that can be drawn in the plane
without any edges crossing (first half of section 9.7 of Rosen).

1 Announcements

Quiz 3 will be in class on Wednesday. Covers counting, probabilities, rela-
tions, equivalence relations, partial orders. See web page for more details.

2 Planar graphs

Before break, we were looking at general properties of graphs. Today, we’ll
concentrate on a limited class of graph: undirected connected simple graphs.
Remember that simple means no loops. And connected means that there’s
a path between any two vertices. And we assume (without ever saying this
explicitly) that all graphs are finite.

Which of these graphs are “planar” i.e. can be drawn in the plane without
any edges crossing (i.e. not at a vertex)?

Examples: K, is planar, cube (Q3) is planar, K33 isn’t. See pictures in
Rosen p. 658.

Notice that some pictures of a planar graph may have crossing edges.
What makes it planar is that you can draw at least one picture of the graph



with no crossings.

Why should we care? Connected to a variety of neat results in math-
ematics. (I'll show one today.) Also, crossings are a nuisance in practical
design problems for circuits, subways, utility lines. T'wo crossing connections
normally means that the edges must be run at different heights. This isn’t
a big issue for electrical wires, but it creates extra expense for some types
of lines e.g. burying one subway tunnel under another (and therefore deeper
than you would ordinarily need).

3 Euler’s formula

A planar graph with cycles divides the plane into a set of regions, also called
faces. Each region is bounded by a cycle of the graph, i.e. a path that starts
and ends at the same vertex. Notice that, by convention, we also count the
unbounded area outside the whole graph as one region.

Examples: a cycle (2 regions), a figure 8 graph (3 regions).

This neat division of the plane into a set of regions seems intuitively
obvious, but actually depends on a result from topology called the “Jordan
curve theorem” which states that any simple closed curve (i.e. doesn’t cross
itself, starts and ends at the same place) divides the plane into exactly two
regions. Proving this theorem requires worrying about the possibility that
the curve has infinitely complex patterns of maze-like wiggles, but we won’t
go there.

Suppose that GG is a connected simple planar graph, with v vertices, e
edges, and f faces. Then Euler’s formula states that:

v—e+ f=2

4 Trees

Before we try to prove Euler’s formula, let’s look at one special type of planar
graph: trees. In graph theory, a tree is any connected graph with no cycles.



When we normally think of a tree, it has a designated root (top) vertex. In
graph theory, these are called rooted trees.

Draw some really small trees, e.g. one, two, three vertices.

Notice that each tree is connected. A graph that contains a set of tree-like
pieces is called a forest.

A tree doesn’t divide the plane into multiple regions, because it doesn’t
contain any cycles. In graph theory jargon, a tree has only one face: the
entire plane surrounding it. So Euler’s theorem reduces to v — e = 1, i.e.
e =v — 1. Let’s prove that this is true, by induction.

Proof by induction on the number of edges in the graph.

Base: If the graph contains no edges and only a single vertex, the
formula is clearly true.

Induction: Suppose the formula works for all trees with up to n
vertices. Let T" be a tree with n + 1 vertices.

Since T has no cycles, we can find a vertex p with degree 1 (only
one edge going into it). E.g. start at any vertex r and follow a
path. The path must end because it can’t go back to r.

Remove p and the edge coming into it, making a new tree T’ with
n vertices. By the induction hypothesis, 7’ has n — 1 edges. So
T has n edges. Therefore the formula holds for 7.

5 Proof of Euler’s formula

We can now prove Euler’s formula (v — e + f = 2) works in general, for any
connected simple planar graph.

Proof: by induction on the number of edges in the graph.

Base: If e = 0, the graph consists of a single vertex with a single
region surrounding it. So we have 1 — 0 + 1 = 2 which is clearly
right.

Induction: Suppose the formula works for all graphs with no more
than n edges. Let GG be a graph with n + 1 edges.



Case 1: G doesn’t contain a cycle. So G is a tree and we already
know the formula works for trees.

Case 2: GG contains at least one cycle. Pick an edge p that’s on a
cycle. Remove p to create a new graph G.

Since the cycle separates the plane into two regions, the regions
to either side of p must be distinct. When we remove the edge p,
we merge these two regions. So G’ has one fewer regions than G.

Since G’ has n edges, the formula works for G’ by the induction
hypothesis. That is v’ — ¢’ + f'=2. But v = v, ¢’ =e — 1, and
f" = f — 1. Substituting, we find that

v—(e—1)+(f—-1)=2

So

v—e+ f=2

6 Application: platonic solids

A fact dating back to the Greeks is that there are only five platonic solids.
These are convex polyhedra whose faces all have the same number of sides
(k) and whose vertices all have the same number of edges going into them

(d).
Show a picture of the five platonic solids from the web: cube, dodecahe-
dron, tetrahedron, icosahedron, octahedron, e.g. wikipedia “platonic solids”.

To turn a platonic solid into a graph, imagine that it’s made of a stretchy
material. Make a small hole in one face. Put your fingers into that face and
pull sideways, stretching that face really big and making the whole thing
flat. For example, an octahedron (8 triangular sides) turns into the following
graph. Notice that it still has eight regions, one for each face of the original
solid, each with three sides.



To be the graph of a platonic solid, all the vertices in the graph must
have the same degree. The faces must also have the same degree, where the
degree of a face is the number of edges on its boundary.

In simple graphs, regions always have degree at least 3. To make the
surface of a solid with flat faces, the vertices must also have degree at least
3.

Claim: these are the only planar graphs whose faces and vertices both
have uniform degrees > 3.

Proof: By the handshaking theorem, the sum of the vertex de-
grees is twice the number of edges. So, since the degrees are equal
to d, we have

dv = 3e

Each edge is on the boundary of two regions. So the sum of the
region degrees is also twice the number of edges. That is

kf =2e

So this means that v = 275 and f = 2—;

Euler’s formula says that v — e 4+ f = 2. Substituting into this,
we get:
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So
26+26 24
—+ — = e
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Dividing both sides by 2e:
1+1 _1+1
d f e 2

If we analyze this equation, we discover that d and f can’t both
be larger than 3. Otherwise the left side of the equation would
be smaller than % So one of them is 3.

Suppose we set d to be 3. Then the equation becomes

L1

3 f e 2
So

r_1.1

f e 6

Since é is positive, this means that f can’t be any larger than 5.
Similarly, if f is 3, then d can’t be any larger than 5.

This leaves us only five possibilities for the degrees d and k: (3, 3),
(3,4), (3,5), (4,3), and (5, 3).

Once we've pinned down the degrees of all the vertices in the graph, we’ve
pinned down the basic structure of the graph and of the corresponding solid
figure. So there are only five possible graph structures and thus five possible
platonic solids.



