
References and argument passing
Michael R. Nowak

University of Illinois Urbana-Champaign

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

Initialization of objects and function calls

Each time a function is called, its parameters are defined and initialized by the
arguments passed in the function call

The semantics of argument passing are identical to the semantics of initialization

int add(int a, int b) {return a + b;}

int main() {
 int i = 4;
 int j = 6;
 int k = add(i,j);
}

Initialization of objects and function calls

When the parameter is an object, we say that the argument is passed by value
because a value is copied into the parameter object for initialization

Changes that the function makes to the parameter will never be reflected in the
argument used to initialize that parameter: we're merely working with a copy of
the argument

int add(int a, int b) {return a + b;}

int main() {
 int i = 4;
 int j = 6;
 int k = add(i,j);
}

Now, consider the following:

I would like to write a swap function that would perform the interchange of a and
b’s values

int main() {
 int i = 4;
 int j = 6;

 int tmp = i;
 i = j;
 j = tmp;

 std::cout << "i = " << i << "; j = " << j << std::endl;
}

Now, consider the following:

void swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main() {
 int i = 4;
 int j = 6;
 swap(i,j);
 std::cout << "i = " << i << "; j = " << j << std::endl;
}

The semantics of argument passing are identical to the semantics
of initialization

Now, consider the following:

Can a function change the values of the actual arguments passed to it? That is,
can we bind names within the scope of our function to objects that reside outside
of it?

void swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main() {
 int i = 4;
 int j = 6;
 swap(i,j);
 std::cout << "i = " << i << "; j = " << j << std::endl;
}

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

References

A reference creates an alias or nickname for an object

We can bind the name ii to an int object i as follows:
int i = 4;
int& ii = i; // ii becomes another name for i

We can also create a name that provides read-only access:
int i = 4;
const int& ii = i; // ii affords read-only access to the underlying object

References

A reference cannot be rebound to some other object; because of this, all
references must be initialized
int& a; // error: declaration of reference variable 'a' requires an initializer int &a

We cannot bind a reference to a literal:

however, we are allowed to take a reference to const to it:

int& a = 11; // error

const int& a = 11; // ok

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

Reference parameters and function calls

Each time a function is called, its parameters are defined and initialized by the
arguments passed in the function call

The semantics of argument passing are identical to the semantics of initialization

void swap(int& a, int& b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main() {
 int i = 4;
 int j = 6;
 swap(i,j);
 std::cout << "i == " << i << "; j == " << j << std::endl;
}

Reference parameters and function calls

When the parameter is a reference, we say that the argument is passed by
reference because the parameter becomes an alias for the actual argument

The reference parameters are names within the scope of our function for the
actual arguments residing outside of it (why is lifetime important?)

Changes that the function “make” on a reference parameter will always be
reflected in the object bound to that reference

void swap(int& a, int& b) {
 int tmp = a;
 a = b;
 b = tmp;
}

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

When do we pass arguments by reference?

When we would like to:

● modify the arguments to which they are bound within our function
○ we have already seen an example of this with swap

● avoid copies
○ some objects in our program can become very large, while other objects

(such as the IO types) cannot be copied

BA

Avoiding copies

Consider the differences between the following function definitions

When called from main as

// passes vect by value
void f(std::vector<int> vect) {
 for (int v : vect)
 std::cout << v << ',';
 std::cout << std::endl;
}

// passes vect by reference
void f(std::vector<int>& vect) {
 for (int v : vect)
 std::cout << v << ',';
 std::cout << std::endl;
}

std::vector<int> numbers{1,2,3,4};
f(numbers);

A

Avoiding copies

// passes vect by value
void f(std::vector<int> vect) {
 for (int v : vect)
 std::cout << v << ',';
 std::cout << std::endl;
}
/*~*/
std::vector<int> numbers{1,2,3,4};
f(numbers);

B

Avoiding copies

// passes vect by reference
void f(std::vector<int>& vect) {
 for (int v : vect)
 std::cout << v << ',';
 std::cout << std::endl;
}
/*~*/
std::vector<int> numbers{1,2,3,4};
f(numbers);

Passing arguments by “vanilla” reference should
generally be avoided
● Passing arguments by “vanilla” reference should generally be avoided

(unless you have reason to use them)
○ They can lead to obscure bugs when you forget which actual arguments

are changed through the parameters
● Instead, you should use reference to const when you are passing large

objects and would like the benefits of pass-by-reference, but do not need
to modify the arguments

void f(const std::vector<int>& vect) {
 // do something
}

Reference to const and function calls

What if we inadvertently wrote an unintended assignment to vect.at(1) in our
trivial definition of f(), a function that was only supposed to read vect, not write
to it?

void f(const std::vector<int>& vect) {
for (int v : vect)

 std::cout << v << ',';
 std::cout << std::endl;
 vect.at(1) = 20; // compiler error
}

void f(std::vector<int>& vect) {
for (int v : vect)

 std::cout << v << ',';
 std::cout << std::endl;
 vect.at(1) = 20; // oops...
}

Lesson Outline

1. Initialization of objects and function calls

2. References

3. Pass by reference

4. When do we pass arguments by reference?

5. Guidance for passing arguments

Guidance for passing arguments

● Use pass by value for small objects, such as the primitive built-in types
○ A simple copy of a small object is effective; don’t pass by reference

unless you have the reason to do so

● Use pass by reference to const for large objects, such as std::vectors and
std::strings when you have no need to modify the object

● Use “vanilla” pass by reference only when needed
○ Favor returning a result rather than modifying an object through a

reference argument

Is the following pass by value or reference?

void increment(int* p) {
*p += 1;

}

int count = 11;
increment(&count);

Why should we prefer “passing by address” if the function is going to modify
the actual argument opposed to vanilla pass-by-reference?

