
Pointers
Michael R. Nowak

University of Illinois Urbana-Champaign

Lesson Outline
1. Review

2. Pointers

3. Important to note

Lesson Outline
1. Review

2. Pointers

3. Important to note

Thinking about objects, types, and values

Type

Object

Value

Variable

Defines a set of possible values and a set of operations for an
object

Memory that holds a value of a given type

Set of bits in memory interpreted according to type

Named object

Thinking about objects, types, and values

A program variable is an abstraction of a computer memory cell or collection of
program memory cells:

Note: different types of objects take up different amounts of space

Variables

Programmers often think of variables as names for memory locations, but there is
much more to a variable than just a name:

Name

Address

Type

Value

Scope

Lifetime

composed of a sequence of letters and digits

is the machine memory address with which it is associated

determines the range of values stored and set of operations

variable is the contents of the memory cell or cells associated with the
variable

the part of the program in which a name has a particular meaning

bound object’s lifespan from the point of its allocation to deallocation

Declaration of variables

Lesson Outline
1. Review

2. Pointers

3. Important to note

Let’s declare our first pointer; it will point to nothing.

int* p = nullptr; // declares p as a pointer to an integer object
 // and initializes p with nullptr
 // meaning p points to nothing

We can visualize this informally as:

Pointers

nullptr

Pointers are objects in their own right, so we can assign them values.

int* p = nullptr; // declares p as a pointer to an integer object
 // and initializes p with the address of nullptr
 // meaning p points to nothing

int i = 7; // assume i’s address 0x7ffc73fa467c
p = &i; // assigns the address of i to p; p now points to i.

We can visualize this informally as:

Pointers

Let’s now declare our first pointer that actually “starts out” pointing to something

int i = 7; // assume i’s address 0x7ffc73fa467c
int* p = &i; // declares p as a pointer to an integer object

 // and initializes p with the address of i
 // therefore, p points to i

We can visualize this relationship informally as:

Pointers

Given

int i = 7;
int* p = &i;

std::cout << &p << ' ' << p << ' ' << *p << std::endl;

Outputs the address of the pointer, the pointer’s value, and the value stored in
the object being pointed to:

0x7ffc73fa4670 0x7ffc73fa467c 7

Pointers

Pointers: assignment to the object pointed to
Given that

int i = 7;
int* p = &i;

Establishes the following relationship

For the following statement
*p = 5 + 6;

Initialization/assignment is right-to-left
associative, so 5 + 6 is evaluated to 11 first.

*p = is evaluated next:

1. go to the address 0x7ffc73fa467c
2. isolate the integer object that starts at

that address
3. and assign the integer value 11 into that

object

Now,
i

Pointers: using the value stored in object pointed to
Given that

int i = 7;
int* p = &i;

Establishes the following relationship:

For the following statement,
int j = *p;

Initialization/assignment is right-to-left
associative, so *p is evaluated first:

1. go to address 0x7ffc73fa467c
2. begin interpreting the data there as an

integer
3. this evaluates to 7

The statement now reads,
int j = 7; // b/c *p evaluates to 7

So, j starts out with the value of 7.

Lesson Outline
1. Review

2. Pointers

3. Important to note

Important to note:

& and * are used both as an operator in expressions and as part of the declarator
to form compound types

Make sure that you understand that it is the context in which these symbols are
used that determines their meaning

int i = 11;
int& r = i;

Here, & appears as a
declarator operator: a
reference is being created

int i = 11;
int* p = &i;

Here, * appears as a
declarator operator: a
pointer is being created; &
appears in the initializer
expression and is the
address-of operator

int i = 11;
int* p = &i;
*p = 2;

Here, * appears as a
declarator operator and
the dereference operator
(give me the object being
pointed to).

