
CS 126 Naive Bayes: Explaining The Math Fall 2020

1 Week 1: Training a Model

1.1 Defining Notation

First, here’s some probability notation that we’ll be using throughout the assignment:

• P (A ∩B) is the probability that A and B both occur.

• P (A | B) is the probability that A occurs, given that B has occurred.

Let Fi,j denote the value of the pixel in row i and column j (zero-indexed); Fi,j will either be 0 (if the pixel
is unshaded) or 1 (if the pixel is shaded). For example, in the n× n image below, F0,0 = 0, F0,1 = 1, and so
on, and the bottom right pixel is Fn−1,n−1 = 0.

...

. . .

. . .

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

n− 1

n− 1

1.2 Setting up the Problem

Let’s say that we wanted to classify the image above. In other words, we want to assign a class c, where
c ∈ {0, 1, . . . , 9}, to the image. Our prediction will be based on n2 pieces of evidence (each individual pixel
is a piece of evidence).

In order to classify this image, we can start by asking the question: what is the probability that this image is
a 0, given these n2 pieces of evidence? In other words, what is the probability that this image is a 0, given
that F0,0 = 0, and F0,1 = 1, and . . . , and Fn−1,n−1 = 0? This can be mathematically expressed as:

P (class = 0 | (F0,0 = 0) ∩ (F0,1 = 1) ∩ · · · ∩ (Fn−1,n−1 = 0)).

We can also ask the same question for class = 1, 2, . . . , 9. Then, out of the 10 possible classes, whichever has
the highest probability will be our prediction!

But how do we calculate this probability? Keep reading to find out!

1.3 Bayes’ Theorem

First, we have to go on a tangent and discuss some more math. If we want to find P (A∩B), we can approach
the calculation in two steps. In order for A and B occur, we first need A to occur, and then we need B to
occur given that A has already occurred. Thus, P (A ∩B) = P (A)P (B | A).

On the other hand, we can slightly change our approach. In order for A and B occur, we first need B to
occur, and then we need A to occur given that B has already occurred. Thus, P (A ∩B) = P (B)P (A | B).

Page 1

CS 126 Naive Bayes: Explaining The Math Fall 2020

Now, combining these two results yields

P (B)P (A | B) = P (A ∩B) = P (A)P (B | A) =⇒ P (A | B) =
P (A)P (B | A)

P (B)
.

The boxed equation is Bayes’ theorem.

If you would like a deeper/more nuanced understanding of Bayes’ theorem, we’d recommend checking out
this video by 3Blue1Brown, or the Wikipedia page.

1.4 Application to Digit Classification

For ease of notation, we’ll define a shorthand for the very long expression from earlier:

AllPixelValues := (F0,0 = 0) ∩ (F0,1 = 1) ∩ · · · ∩ (Fn−1,n−1 = 0).

As a reminder, the probability that we’re interested in is P (class = 0 | AllPixelValues). Bayes’ theorem
tells us that

P (class = 0 | AllPixelValues) =
P (class = 0)× P (AllPixelValues | class = 0)

P (AllPixelValues)
.

1.5 Independence Assumption

Two events are independent if the occurrence of one event does not affect the probability of the other event.
If events A and B are independent, then we have P (A ∩B) = P (A)P (B).

Dice example: Imagine that we roll two fair six-sided dice. Then,

P (Dice 1 is even ∩Dice 2 is a six) = P (Dice 1 is even)× P (Dice 2 is a six) =
1

2
× 1

6
,

because these two events are independent. However,

P (Dice 1 is even ∩Dice 1 is a six) 6= P (Dice 1 is even)× P (Dice 1 is a six),

because ‘Dice 1 is even’ is not independent from ‘Dice 1 is a six’.

Let’s take a closer look at the term P (AllPixelValues | class = 0). This is the probability that this exact
arrangement of pixel values (shaded or unshaded) occurs, given that the image is a 0.

Recall that AllPixelValues actually represents the combination/intersection of n2 events. (The value
of each pixel is an event; for example, F0,0 = 0 is an event.) Of course, these n2 events aren’t independent.
If a pixel is shaded, then its neighboring pixels are more likely to be shaded; in other words, the occurrence
of one event does affect the probability of the other events.

However, in Naive Bayes, we make the (incorrect) assumption that these n2 pixels are independent—this is
the “naive” part of Naive Bayes. In other words, given that the image is a 0, we assume that the probability
of pixel (i, j) being shaded, P (Fi,j = 1 | class = 0), is independent to the probability of another distinct
pixel (p, q) being shaded, P (Fp,q = 1 | class = 0). The reason we make this assumption is that it allows us
to apply the product rule from above:

P ((Fi,j = 1) ∩ (Fp,q = 1) | class = 0) ≈ P (Fi,j = 1 | class = 0)× P (Fp,q = 1 | class = 0).

Page 2

https://www.youtube.com/watch?v=HZGCoVF3YvM
https://en.wikipedia.org/wiki/Bayes%27_theorem

CS 126 Naive Bayes: Explaining The Math Fall 2020

If we extend this to all n2 events, then we get

P (AllPixelValues | class = 0)

= P ((F0,0 = 0) ∩ (F0,1 = 1) ∩ · · · ∩ (Fn−1,n−1 = 0) | class = 0)

≈ P (F0,0 = 0 | class = 0)× P (F0,1 = 1 | class = 0)× · · · × P (Fn−1,n−1 = 0 | class = 0).

1.6 How to Calculate These Probabilities

Recall the quantity that we’re trying to compute:

P (class = 0 | AllPixelValues) =
P (class = 0)× P (AllPixelValues | class = 0)

P (AllPixelValues)
.

First, let’s focus on the P (AllPixelValues | class = 0) term. In order to compute the naive approximation
of this term (which was discussed in the previous section), we need to be able to calculate feature probabilities
such as P (F0,1 = 1 | class = 0).

This is where the training data comes into play! As a reminder, P (F0,1 = 1 | class = 0) is the probability
that pixel (0, 1) is shaded, given that the image belongs to class 0. To compute this, we can just count the
number of times this occurs in the training data:

P (F0,1 = 1 | class = 0) =
of images belonging to class 0 where pixel (0, 1) is shaded

Total # of images belonging to class 0 in the training data
.

Similarly, we have

P (F0,0 = 0 | class = 0) =
of images belonging to class 0 where pixel (0, 0) is unshaded

Total # of images belonging to class 0 in the training data
.

More generally,

P (Fi,j = f | class = c) =
of images belonging to class c where Fi,j = f

Total # of images belonging to class c in the training data
.

The numerator also contains another term: P (class = 0). This term is called a prior ; it represents the
probability that an image belongs to class 0 before we take into account any of the image’s pixel values. We
can also calculate this term by counting the training data:

P (class = 0) =
of images belonging to class 0 in the training data

Total # of training images
.

In other words, this is answering the question, if I grab a random image from the training set, what’s the
probability that I’ll get a 0? More generally,

P (class = c) =
of images belonging to class c in the training data

Total # of training images
.

That takes care of everything in the numerator. For now, we don’t need to worry about the P (AllPixelValues)
term in the denominator; we’ll discuss that more in week 2.

1.7 Laplace Smoothing

There’s a small snag that we might run into when using the formulas above. Notice that in the original
image, the shaded pixel at (0, 1) seems to be an accidental anomaly. Maybe it was a stray bit of ink from the
writer’s pen, or a tiny speck of dust on the scanner. Either way, in almost all images, we’d expect pixels near
the border to remain unshaded. Thus, it’s very likely that the training data does not contain any images
where pixel (0, 1) is shaded.

Page 3

CS 126 Naive Bayes: Explaining The Math Fall 2020

If this occurs, then we’d have P (F0,1 = 1 | class = 0) = 0 (because the numerator of the fraction would
be 0). Since we’re multiplying everything together, this would cause the final probability to become zero,
regardless of how probable the other pixels’ shadings are. In other words, it’s possible for a small anomaly
to override all of the other evidence.

To avoid this problem, we will use a technique called Laplace smoothing. This technique works by adding
a small positive value k to the numerator, and kV to the denominator. Here, V is the number of possible
values our feature can take on, so in our case: 2 (shaded or unshaded). The higher the value of k, the
stronger the smoothing is. The formula to calculate the smoothed probability would look like this:

P (Fi,j = f | class = c) =
k + # of images belonging to class c where Fi,j = f

2k + Total # of images belonging to class c
.

We will also apply this to our prior class probabilities, but in this case, we have V = 10 because there are
10 possible classes:

P (class = c) =
k + # of images belonging to class c

10k + Total # of training images
.

For now, you can just set k = 1. In week 2, you can experiment with different values of k and see how it
affects your classification accuracy.

Side Note: Before our model processes any training images, we’ll have P (Fi,j = f | class = c) = k
2k = 1

2

and P (class = c) = k
10k = 1

10 , which should make sense intuitively. (Essentially, when the model has no
data yet, it assumes pixels are equally likely to be shaded or unshaded, and it assumes that all 10 classes
are equally likely.) However, the more training data our model sees, the less effect Laplace smoothing has.

What you need to do: For week 1, you need to create a model that is able to process the training data
and provide the following probabilities (with Laplace smoothing applied):

• P (Fi,j = f | class = c) for all i, j ∈ {0, 1, . . . , n− 1}, c ∈ {0, 1, . . . , 9}, and f ∈ {0, 1}

• P (class = c) for all c ∈ {0, 1, . . . , 9}

2 Week 2: Creating a Classifier

2.1 Ignoring the Denominator

As you may remember from last week, we still need to consider the denominator: P (AllPixelValues), also
known as the evidence distribution. The good news is, we actually don’t need to consider it! Recall that our
goal was just to compare the probabilities for different classes and pick the class with the highest probability.
For our purposes, calculating P (AllPixelValues) is entirely irrelevant, because this probability will be
the same regardless of which class we’re analyzing. Since the denominator is constant across all ten classes,
we can ignore the denominator and the winner (i.e. the most likely class) will still be the same.

Therefore, what we actually care about is the following proportion (∝ represents proportionality):

P (class = 0 | AllPixelValues) ∝ P (class = 0)× P (AllPixelValues | class = 0)

≈ P (class = 0)

× P (F0,0 = 0 | class = 0)× P (F0,1 = 1 | class = 0)× · · ·
× P (Fn−1,n−1 = 0 | class = 0).

Page 4

CS 126 Naive Bayes: Explaining The Math Fall 2020

2.2 Avoiding Underflow by Using Logarithms

If we attempt to evaluate the expression above, we’ll run into another snag. These probabilities are all going
to be less than 1.0, which means if we multiply them all together, they’re going to get really small really
fast, and we’ll run into the problem of Arithmetic Underflow.

Again, to get around this snag, we can take advantage of the fact that we only care about comparing the
probabilities for different classes. If we take the logarithm of all ten probabilities that we’re comparing, the
winner will still be the same as before. This allows us to avoid arithmetic underflow, because a floating-point
double would not be able to accurately store a number as small as 10−1000, but it can easily handle numbers
in the vicinity of log

(
10−1000

)
= −1000.

At this point, the thing we’re computing is no longer a probability, so we’ll call it a likelihood score. Recall
that log(ab) = log a + log b; applying this property gives us:

LikelihoodScore(0) = log(P (class = 0))

+ log(P (F0,0 = 0 | class = 0)) + log(P (F0,1 = 1 | class = 0)) + · · ·
+ log(P (Fn−1,n−1 = 0 | class = 0)).

2.3 Make a Prediction!

We’re in the home stretch now! The last step is to determine which class has the highest likelihood score,
and classify the image as that class.

What you need to do: Given a trained model (which you should have from last week) and a new image
that doesn’t belong to the training dataset, you should be able to calculate LikelihoodScore(c) for all
c ∈ {0, 1, . . . , 9}. Then, you should be able to determine which class c has the highest likelihood score, and
classify the image as belonging to class c.

Page 5

https://en.wikipedia.org/wiki/Arithmetic_underflow

	Week 1: Training a Model
	Defining Notation
	Setting up the Problem
	Bayes' Theorem
	Application to Digit Classification
	Independence Assumption
	How to Calculate These Probabilities
	Laplace Smoothing

	Week 2: Creating a Classifier
	Ignoring the Denominator
	Avoiding Underflow by Using Logarithms
	Make a Prediction!

