
CS 126 For Week 7 Code Review Spring 2019

1 Wood: The Gathering
For this assignment, you will be creating at least one intelligent player strategy for a wood cutting
game that we have given you. The game is called Wood: The Gathering.

We will provide you with everything else needed to run this game. This includes a game en-
gine, graphics engine and associated graphics resources. We will be giving you all of the source code
for these pieces so that you may test your strategies. You are not allowed to modify the interface
that we provide, WoodPlayerStrategy. You are free to modify any other files including the game
engine and graphics engine, but do so at your own risk and know that we will be using the original
copy that we gave you to run the competition. You should create your Github repository from this
link:

https://classroom.github.com/a/PH9gc7Qy

2 The Game
The game is a turn based wood cutting competition played on a NxN square set of tiles which is
considered the Game Board. There are two players per game, a red player and a blue player. The
red player will start in the lower left tile of the game and the blue player will start in the upper
right tile of the game. Each turn both players will receive information about the board state and
will be required to submit a TurnAction, which is the action that they want to make on the next

1



CS 126 For Week 7 Code Review Spring 2019

turn. Turn actions including moving up, right, down and left, picking up a seed, planting a seed,
and cutting down a tree. All actions take one turn to execute.

Movement throughout the game will be in the four directions, UP, RIGHT, DOWN, LEFT.
Moving one tile takes a single turn. You are free to move wherever you want within the game board.
If you try to move outside the bounds of the game board, your player will simply not move.

Scattered throughout the Game Board are seeds. In order to pick up a seed, you will need
to position your player such that they are standing on the tile with the seed and then execute the
PICK_UP action. Once you have a seed, you can plant it on any empty tile. In order to do so,
you will need to execute the PLANT_SEED action when you have a seed in your inventory and
you are standing on an empty tile. If you have multiple seeds in your inventory, the seed that you
picked up first will be planted first (FIFO). Finally, once you have planted a tree (or your opponent
has planted a tree) you can cut it down by executing the CUT_TREE action when standing on a
tile with a tree on it.

Each player has an inventory which has a max size. Players will receive Seed items when they
successfully execute the action PICK_UP and players will receive Wood items when they suc-
cessfully execute the action CUT_TREE. Performing one of these actions with a full inventory
will result in the item being permanently lost from the game. Planting seeds will remove seeds from
the player’s inventory and scoring wood will remove wood from the player’s inventory.

Players can score wood by walking back to their home tile. This is the tile that they started
on. Once the player is standing on their home tile with Wood in their inventory, all the wood items
will be removed and points added to their score.

When trees are planted, they will constantly grow and gain value every turn. There is no limit to
the size or value of a single tree. The value of the wood item received when a tree is cut down is the
value of the tree on that turn.

Finally, since players execute turns "at the same time", potential conflicts such as moving into the
same tile will be handled by the concept of red turns and blue turns. On a red turn, the red player
will have priority for these types of moves. On a blue turn, the blue player will have priority. Red
turns and blue turns will alternate throughout the game. The first turn will be a red turn. So if
two players are trying to move into the same tile, and it is currently a red turn the red player has
priority and will successfully move into that tile. The blue player will be blocked from moving and
therefore do nothing.

3 The Interface
We have given you an interface that your player strategy should implement. You need to implement
this interface, otherwise your strategy will not run with our game engine. This interface is called
WoodPlayerStrategy. It has the following methods:

1. initialize - This function will be called at the start of every round, passing in the size of the
board, the maximum items that a player can carry in their inventory, the score to reach to
win a single round, the starting tile location for the player, whether the player is a red player
and a Random object for the player to use for generating random numbers if their strategy

2



CS 126 For Week 7 Code Review Spring 2019

needs that.

2. getTurnAction - This function should be the meat and potatoes of your player. It will be
called every turn to get the action that your player wants to execute. This passes in the
current board state as a PlayerBoardView object and whether the current turn is a red
turn or not. The function then returns a TurnAction, which is the action that the player
wishes to execute. Returning null in this function will cause the player to do nothing.

3. receiveItem - This function will be called whenever the player successfully finishes an action
that results in them receiving an item. The two actions that can result in this are PICK_UP
and CUT_TREE. This function will not be called if the player’s inventory is full, even if
they successfully finished an action.

4. getName - This function is super simple, just return the name that you want to give your
player. Can be as simple as just a string constant. Note that if you manage to throw an
exception in this function, your player name will be the exception.

5. endRound - This function will be called at the end of every round. This passes in the number
of points that your player scored and the number of points that the opposing player scored.
You should also use this method to reset any status or state that your player may carry.

4 The Competition

We will be running a competition throughout the week of the assignment (and potentially after).
Times when the competition will be run and additional information will be posted on Piazza.
Participation and performance in the competition will be a small percentage of your grade.

4.1 How to submit code
Push code to your master branch. We will pull this when we run the competition.

In order for us to run your player strategy in the tournament, you must put a single class that
implements the WoodPlayerStrategy in the following package. You may also put any other
classes you need in that package.

• package wood.competition

4.2 How to make sure your code compiles in our competition engine
Do not include any subpackages in the wood.competition package. These will not get compiled or
run. Do not reference any classes that you personally created which are outside the competition
package.

• References to classes we provided like the WoodPlayerStrategy class or TurnAction enum
are perfectly fine.

• If you have other classes you wrote that your strategy needs, they need to be in the competition
package.

• This means you either need to move them to the competition package, or make a copy of the
class to put in the competition package.

3



CS 126 For Week 7 Code Review Spring 2019

• Yes, repeating code is bad, but points will not be taken off for having duplicate classes in the
competition package.

• Your class must also implement a constructor that takes no arguments. You may have logic in
this constructor and you may have other constructors, but you need at least one constructor
that does not take any arguments. This is the constructor that will be used in the competition
engine.

4.3 How to ensure your code is valid
Put only one player strategy in the competition package, otherwise we will not know which
Player to run. There should only be one class in the competition package that implements
WoodPlayerStrategy

• Do not print things in your player strategy: This clogs up our logging of the games
being run and we will not execute your code if your strategy prints to console

• Don’t cheat: Do not use things like using reflection to directly modify your player’s score.
This is just an example, reflection and other similar techniques are disabled.

• Don’t write malicious code: Things like calling System.exit() in your player strategy
will not work and will result in a 0 for this assignment.

5 Requirements
To fully complete this assignment, you must write a WoodPlayerStrategy that competes in the
competition. This strategy must at least meet the following requirements.

• It participate in and not crash in the competition

• It must work on any board sizes between 10 and 30 with different random seeds

• It must consider the case where your trees are cut by the other player

• It must consider the case where you move to the same space as the other player

• It must win by hitting min score vs random 99% of the time.

6 C++ Preparation
In order to prepare for using C++ in the following weeks you will need to show you can build a
C++ program. Specifically the HelloWorld program. There is nothing to check in for this simply
show that you can compile the program at your code review.

4


