C++ Arrays, Pointers

Review: Java and C++ are very similar

m Similarin:
= Syntax: Java used syntax similar to C++ to ease adoption
" Principles: Both are object-oriented languages
= Execution: Many similarities when run on a machine

= Compiled down to similar assembly language

m Different in goals:
® Java designed for: safety and portability

" C++ designed for: performance and control

As a result, C++ exposes aspects of execution that Java hides

What we’ve talked about so far

m Main function: where everything starts

" #include: “” for things you write, <> for things you didn’t
m Printing things out with std::cout and std::endl

= Namespaces, using, scope resolution operator (3_:_)

A—

m Object declaration
= h (declarations) include guards public/private regions

= _cpp (function implementation)
m Constructors crutornatc

p—e"

" Don’t rely on defs< constructors; primitives uninitialized

= |nitializer lists: for init-ing children —and- calling other
constructors

What we’ve talked about so far, cont.

m Allocating objects, two ways: U auto pond
“

" On the stack: uses same notation as primitives M@w/ |

= “Deallocated” when they leave scope

e

" On the heap: returns a pointer to the allocated thing
= Thing *thing = new Thing(); n Oj7
= Needto manually‘delete this memory. 4\)‘5“[0/'!

[

Nom ;(Q{ ?

m Useful tools for looking at memory
= & (address of operator)
= sizeof(thing) says how big “thing” is

s

Arrays in C++ vs. Java (Primitives) 2 o

m Arrays of primitives in C++ are similar to those in Java Eg ;
" |aid out sequentially 9 <

= Unlike Java, they don’t know how big they are
= They don’t prevent you from accessing elements that don’t exist
= |t is common in C/C++ to keep an int length with an array

int array[10];
cout <<b<< " " << sizeof(array) << end|; sh} fue

cout << &array[0] << " " << &a@b] << endl;
MW"{ ar (‘01 a4y (1] (ng
6 its { . lC \
.m W
QTS 7 L T
ol of Clicny (3) o) ook

alless @ © 5

Arrays in C++ vs. Java (Objects)

m InJava, arrays of objects are arrays of references to objects

= We had to do:

Double [] doubles = new Double[100];
for (inti=0; i < doubles.length; i++) {
doubles[i] = new Double(i);

(\}/%‘/\
—]) , —

YT 2 4 N U N U AR N S A N I

C‘Ou l;ld “ewl'{ \)\6

= Also, arrays were objects themselves (heap allocated)

Arrays in C++ vs. Java (Objects)

m In C++, arrays of objects can be arrays of objects

= Allocated in place, just like primitive values

ExpressionValue eValueArray[10];
cout << sizeof(ExpressionValue) << " " << sizeof(eValueArray) << endl;
cout << &eValueArray[0] << " " << &eValueArray[1] << end|;

" Arrays can be stack or heap allocated
= |f heap allocated, it returns a pointer to the type
ExpressionValue *eValueArray2 = new ExpressionValue[10];

/ gyrrws‘ o\\}a \\»&

C’\’a luc f\ fr7

DL‘}'eC‘"

So let’s talk more about pointers
‘[(\'l- M7Tn+

m 4 main operations:
" Declaring: use a * in declaration

= int *myintPointer;
= Assignment: must match type
= myIntPointer = &myint; // & is address of operator

= mylntPointer = new int; // new returns a pointer
" Copying: from one pointer to another
= int *myOtherintPointer = mylintPointer;

= De-referencing: use * in expression to get to the value

fl i] A2 §
lj\,,/ = *myOtherintPointer = 7; // G5/ g 9 Ugfp:& PRy,
77« = int justAnint = *myIntPointer;

// QL ‘ ue O ﬁ-;l\
v ety whe of Thing
e%rre 4 $10a fOIn LJ \LO

What is happening here? (Draw a picture!)

A) 7
B) 8

int myInt = 8;

int *myIntPointer;

myIntPointer = &myInt;

myIntPointer = new int;

int *myOtherIntPointer = myIntPointer;

yOtherIntPointer = 7;

int justAnInt = *myIntPointer;
cout << justAnInt << endl;

[A4,
anAv 1+F+(.(\ﬂ .} , I\.7In'l

B E][—

More pointer puzzles

int *pl (A ; e
int *p2 = &b; /b@
int *p3 = &c;)
pl = p2; /C/@
*xpl = *p3; 4 f%
*p3 = 5; Y
((cout << a) << " ")<< b << " " << ¢ << endl;
1302

Pof Po P Yc< b

A)555
B)325
C)125
D)135
E)513

q

DR | eb\l\

T]]

C++ pointers point to arrays or individuals

int _*anotherIntPtr = new int[10];
for (int i = 0; i < 10; i++) { anotherIntPtr[i] = i; }

anotherIntPtr = &(anotherIntPtr[2]);
cout << *anotherIntPtr << endl; <

for (int i = 0; 1 < 8; i++) {
cout << anotherIntPtr[i] << endl;

} - 2 > 4 S 6789
igt justAnInt = 7;

anotherIntPtr = &justAnint; q/‘/t‘:a hon\(rﬁa'“a‘/r + ‘) X)ZS
cout << *anotherIntPtr << “ ”; 7’

cout<< anotherIntPtr[0] << endl; Siteof (i,
V] rie A

'pqlk"}‘-

oL E w,3.+,§, ¢, 3, 5’,‘7b 3 —
R

1"

C++ pointers point to arrays or individuals

m As aresult, you need to tell delete if what you are deleting is
an array:

" Use delete [] for arrays, delete for single things

ExpressionValue *eValuePtr = new ExpressionValue();
delete eValuePtr; "

ExpressionValue *eValueArray2 = new ExpressionValue[1l0];
delete [] eValueArray2;

2o —
/\./~

GG, e i D T

¥ =)¢ 1_’_’_,__1&:
)/[3]{4) X {(@4 i\jl

12

