Android Pre-requisites

Android To Dos

m Make sure you have working install of Android Studio
" Make sure it works by running “Hello, world” App

= On emulator or on an Android device

= Kindle Fire only S50 from Amazon. Next day delivery.

m Watch first lesson of Udacity “Developing Android Apps”:

" https://www.udacity.com/course/new-android-
fundamentals--ud851
= MOOC created and maintained by Google engineers
= FREE

= |Lesson 1: Create Project Sunshine

= Gives some background on Android, builds a simple user interface

= We’ll have a quiz on Thursday; next assignment is Android

GUI terminology

m window: A first-class citizen of the GUI.

" Also called a top-level container.

m component: A GUI widget that resides in a window.

" Called a View in Android
= examples: Button, CheckBox, TextView

m container: A logical grouping for storing components.
" examples: LinearLayout, ListView,

GUI interface example

<+

@

=

Manage Topics

ap here to create a new topic

Twitter
logged in as @rorinraszka

O

Lifestyle
Etsy, Pinterest, LifeHacker,
Fast Co.Design, Maxim, Elle

Technology
TechCrunch, The Verge, GigaOM,

e
'
A

|

¥»

}HLL

w‘ \UB

/
fremiel

71

android.view.View

m https://developer.android.com/reference/android/view/
View.html

Breakdown of a Layout

Lifestyle

Etsy, Pinterest, LifeHacker,
Fast Co.Design, Maxim, Elle

Design Pattern: Composite

Compose objects into tree structures to represent part-

whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

Graphic

—

os—

Draw(
Add{Graphic)

Hamowve(Graphic)

GetChild(int)

A

graphics

Rectangle

—

Text

——

Picture
—

Drranw)

Drawi(}
~

aPicture

aRectangle

aPicture

[aText aﬁectﬂnglej

Draw(} ©-—-———-
Add{Graphic g) &
Remove{Graph:c)
GelChikd{int)

forall g in graphics
g.Drawi)

i

add g to list of graphics

o

Design Pattern: Composite (cont.)

m Client doesn’t need to know whether an object is a leaf or a

composite
Client |— pl Component |....
Cparationy)
AddfComponant)
Hemova{Componani)
GatChilaiing)
childran
Leaf Composite N ————————

. ... farali g in children =
Operationi) Operation(} =------F-=--=-=--- g.Operation();
Add{Componant)

Hemove(Componeant)

Gatlhild{int)

Code vs. Resources

m Android represents many things in a declarative form

= Describe the result, not the process of their generation
= Easier for tools (E.g., IDE) to work with

® Use different resources in different circumstances
_ﬁ

= Different strings for different locales, and

= Different layouts for different device sizes/orientations

® Encoded in XML

XML (eXtensible Markup Language)

m For “marking up” data so it can be processed by computers

" Much like JSON in purpose
Whet Rl o XML

<?xml version="1.0"?> il weam\ Per?
<weatherReport> Cla)~e/c.~{.7 skak
<date>7/14/97</date>

<city>North Place</city>, <state>NX</state>
<country>USA</country>

High Temp: <high scale="F">103</high>

Low Temp: <low scale="F">70</low>

Morning: <morning>Partly cloudy, Hazy</morning>
Afternoon: <afternoon>Sunny & hot</afternoon>
Evening: <evening>Clear and Cooler</evening>

</weatherReport>

10

XML vs. HTML

m HTML and XML look similar, because they are both SGML
languages (SGML = Standard Generalized Markup Language)

= Both HTML and XML use elements enclosed in tags (e.g.
@body>This is an element</body%)

" Both use tag attributes (e.g.,
)

" Both use entities (<, >, &, ", ')
m More precisely: - - B -

= HTML is defined in SGML; XML is a (small) subset of SGML
m Differences:

= XML describes content; HTML describes structure &
presentation

= HTML has fixed set of tags; XML you define your own tags

1"

XML Structure

m An XML document may start with one or more processing
instructions (Pls) or directives:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="ss.css"?>

m Following the directives, there must be exactly one root
element containing all the rest of the XML:

<weatherReport>

</weatherReport>

12

XML building blocks

m Aside from the directives, an XML document is built from:
" tags, in pairs: <high scale="F">103</high>
" elements: high in <high scale="F">103</high>
= attributes: <high scale="F">103</high>
= entities: <afternoon>Sunny & hot</afternoon>

= character data, which may be:
= parsed (processed as XML)--this is the default
= unparsed (all characters stand for themselves)

= comments: <!-- anything <in> & here is comment -->

13

Elements and attributes

m Attributes and elements are somewhat interchangeable

m Example using just elements:

<pame>
<first>David</first>
<last>Matuszek</last>
</name>

m Example using attributes:
<name first="David" last="Matuszek"></name>

m You will find that elements are easier to use in your
programs -- this is a good reason to prefer them

m Attributes often contain metadata, such as unique IDs

m Generally speaking, browsers display only elements (values
enclosed by tags), not tags and attributes

14

I
Well-formed XML

m Every element must have both a start tag and an end tag, e.g.
<name> ... </name>

= But empty elements can be abbreviated: <break />.
= XML tags are case sensitive

= XML tags may not begin with the letters xml, in any
combination of cases

m Elements must be properly nested, e.g. not <i>bold and
italic</i>

m Every XML document must have one and only one root
element

m The values of attributes must be enclosed in single or double
quotes, e.g. <time unit="days">

m Character data cannot contain < or &

15

I
Entities

m Five special characters must be written as entities:
tamp; for & (almost always necessary)
< for < (almost always necessary)
> for > (not usually necessary)
" for © (necessary inside double quotes)
' for ° (necessary inside single quotes)

m These entities can be used even in places where they are
not absolutely required

m These are the only predefined entities in XML

16

XML declaration

m The XML declaration looks like this:
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

= The XML declaration is not required by browsers, but is required by
most XML processors (so include it!)

= |f present, the XML declaration must be first--not even whitespace
should precede it

= Note that the brackets are <? and 7>
= version="1.0"is required (this is the only version so far)

= encoding can be "UTF-8" (ASCll) or "UTF-16" (Unicode), or something
else, or it can be omitted

= standalone tells whether there is a separate DTD

17

Names in XML

m Names (as used for tags and attributes) must begin with a
letter or underscore, and can consist of:

= | etters, both Roman (English) and foreign
= Digits, both Roman and foreign
(dot)
- (hyphen)
(underscore)
(colon) should be used only for namespaces
" Combining characters and extenders (not used in English)

18

Comments

m <!-- This is a comment in both HTML and XML -->
m Comments can be put anywhere in an XML document

m Comments are useful for:
= Explaining the structure of an XML document
= Commenting out parts of the XML during development and testing

Comments are not elements and do not have an end tag
The blanks after <!-- and before --> are optional

The character sequence -- cannot occur in the comment
The closing bracket must be -->

Comments are not displayed by browsers, but can be seen by
anyone who looks at the source code

19

Document Type Definitions

m You can make up your own XML tags and attributes, but...
= _..any program that uses the XML must know what to expect!

m A DTD (Document Type Definition) defines what tags are legal
and where they can occur in the XML

m An XML document does not require a DTD
m XML is well-structured if it follows the rules given earlier

m In addition, XML is valid if it declares a DTD and conforms to
that DTD

m ADTD can be included in the XML, but is typically a separate
document

m Errors in XML documents will stop XML programs
m Some alternatives to DTDs are XML Schemas and RELAX NG

20

Reivew of XML rules

m Start with <?xml version="1"?>
m XML is case sensitive

m You must have exactly one root element that encloses all the
rest of the XML

m Every element must have a closing tag
m Elements must be properly nested

m Attribute values must be enclosed in double or single
quotation marks

m There are only five pre-declared entities

21

Event-Driven Programming

m A programming paradigm
m Program flow is determined by events

= E.g., user actions (mouse clicks, key presses), sensor
outputs, or messages from other programs/threads.

m Dominant paradigm used in graphical user interfaces

m Main loop listens for events
" Triggers a callback function when event is detected.

" Framework provides the event loop

= We write and register the callbacks

22

-
Context Object

m An app has application state/environment data and resources
= E.g., assets, resources, package manager, preferences
" |t needs access to these to perform some operations

m Android organizes these in a Context object
® Context is an abstract base class
= Activity, Service, etc. isA Context

" You will mostly use the Context indirectly)rn»/fo,;l Z—’Z/‘
—_— ar
= E.g., passitasanargumentto other function calls /

23

Toasts

m Messages that are temporarily drawn over the Ul

Hello world, | am a toast.

m Useful for user notifications and during development
m Toast.makeText(view.getContext(),
“Hello world, | am a toast”,
Toast.LENGTH_LONG).show();

24

