Design Patterns,
cont.

Design Patterns

Elements of Reusable
Object-Oriented.Softy

EriCh Gam ,\
Richard Helm

e -

‘Foreword by Grady Booch

O

>

ONILAIWOD TVYNOISSI40dd AT TISIM-NOSIAAY

2,
b
W

Problem: Social media updates

m You have your InstaTwitinYouFaceTrest app open and a
friend makes a post / updates their status. How do you get
the info before the next time you (manually) refresh your

app?

The Observer Pattern (a.k.a. Publish/Subscribe)

m Problem: Keep a group of objects “in sync” in the presence of
asynchronous updates, while minimizing the amount of

coupling.

m Intent: Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically.

m Use the Observer pattern when:

= When changes to one object requires changes to other and
you don’t know which and/or how many.

= When an object should be able to notify other objects
without making assumptions about who these other objects
are (i.e., you don’t want these objects tightly coupled).

Observer Pattern

A) Classes
B) Objects

Subject observers -_.] Observer

Attach{Observer) Updatef)
Delgch[{]bsewer} for all 0 in ohservers E‘-:;
Motify() o -——--- --| o-=Updata)
!
‘/—/kr\‘ ConcreteObserver
. subject -
o--| - observerstate =
ConcreteSubject |y Update() subject-=GetState()
D_ (R E—

GetState() retum subje ctﬂml}‘ ohsamnverState

SetState()

subjectState

Observer Pattern

A) HasA (containment)
B) IsA (inheritance)

Subject observers . I| Observer

Attach{Observer) Updatef)
Delgch[{]bsewer} for all 0 in ohservers E‘-:;
Motify() o -——--- --| o-=Updata)
!
|
‘/—/kr\‘ ConcreteObserver
. subject -
o--| - observerstate =

ConcreteSubject |y Update() subject-=GetState()
GetState() ©---r-1 retum subje ctﬂml}‘ ohserverState

SetState()

subjectState

Observer Pattern

m Solution:

Observers can “attach” to a Subject.
When Subject is updated, it calls Update() on all Observers
Observers can query Subject for updated state.

Subject Jghsesvrﬁrs

Attach{Observer)
Detach(Observer)

Moty o-----1 --

A

ConcreteSubject L.

[

T

for ali o in observers |
o-=Update()

-

subject

m:*2

%

GetState() ---F-

=atStatal)

subjectsiate

refurn subjectStale

Updated)
ConcreteObserver
Lipdated) -
ohsarverState

Tl

subject-=GetStatel)

J observarstate =

Class/Object Notation (cont.)

m Interaction Dlagram Solid vertical line = existed before/after interaction

Dashed vertical line = didn’t exist

Time aCreationTool aDrawing aLineShape
passing -
| : %
l
new LineShape :
e e e e e e e e e e e e e, e, e e e e e e e e —- _'
} Dashed horizontal
— nat; line = creation
Box = period | " | 421 ineShape) —
active during w1 Refreshi)
interaction \ .|
Draw()
Solid horizontal -
line = invocation

Observer Pattern Interaction Example

m aConcreteObserver modifies a ConcreteSubject
o](‘-u J.7 -]')'0\ C‘LKJ

e e

aConcreteSubject aConcreteObserver anotherConcreteObserver

—

SetState()

o=
H
Motity()
e

Update()

GetState()
i | €

Update(}

GetStatm
el S—

Problem: Playing AKQ in different system

m acekingqueen.com opens an online contest for best robot
players for that game. You want to submit your entry, but
the expect a different interface to the robot players. Do you
have to re-write your code to implement their interface?

Adapter Pattern

m Intent: Convert the interface of a class into another interface
that a client expects. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

I

m Use the Adapter pattern when:

" You want to use an existing class and interface doesn’t match the
one that you need

" You want to create a reusable class that cooperates with
unrelated and unforeseen classes (non-compatible interfaces)

" You need to use several existing subclasses, but it’s impractical to
adapt their interface by subclassing every one.

10

Adapter Pattern

m Solution:
= Adapter class IsA derived class of Target type
= Adapter class HasA Adaptee class
= Adapter class delegates requests to Adaptee class

. RN M oy er gLf“JY —2;
ACLK‘U G - F‘ 7 - M‘;Szhcr)fgsf‘“w

Client = Target —w{ Adaptee
Requeastyf) Sjﬁf:iiaﬂ Hequesti)
adaples
Adapter

Request() O-fF--=-=-===-=-=--- adaptes->5pecificRequasi()

1"

-
Factory Method

m Intent: Define an interface for creating an object, but let
subclasses decide which class to instantiate. l.e., defer

instantiation to subclasses.
m Also known as: Virtual Constructor
m Use a Factory Method when:

" Aclass can’t anticipate the class of objects that it must
create

e,

= A class wants its subclasses to specify the objects it creates

= Classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate

12

Factory Method

Al

Product

)

ConcreteProduct

/
Lo

[

v
Pl Faches

Creator

FactoryMathody)
AnCpearation() -

?

product = FactoryMathod() 1

ConcreleCreator

FactoryMethod(} -

returm new Eﬂncretepmductﬂ

[A)O](Fac!@’7

Converting Algorithms to Code

m There are lots of good algorithms that exist
m They are generally written in pseudo code

m An important skill for programmers is to be able to convert
psuedo-code into code

m This is what we’ll do for our next assignment

m So let me introduce to you the idea of dynamic programming

14

Dynamic Programming

m Refers to solving a complicated problem by breaking it down
into simpler sub-problems in a recursive manner using
memoization

m Requires:
= Optimal Substructure: /

= a problem that can be solved optimally by breaking it into
sub-problems and then recursively finding the optimal

/f

solutions to the sub-problems

m Overlapping Sub-problems

15

Memoization

m Remember the result of solving a sub-problem.

m Store in a look-up table where the description of the sub-
problem is the k_e__/.

m Before(re-)solving a sub-problem, check the lookup table
and immediately return the stored value if present.

————

m Sometimes we refer to this as caching a result

16

