T

Introduction to
Design Patterns

Design Patterns

lements of Reusable

Erich Gamma'
Richard Helm
Ralph Johnson < igme

John Vlissides

pp— —

>

S31F3S ONILNAWOD TVNOISSI10dd AFTISIM-NOSIAAV

How hard was week 6 code review assighment?

A) Easy

B) Moderate

C) Challenging
D) Unreasonable

How long did week 6 assighment take?

A) Less than 2 hours
B) 2 to 4 hours

C) 4 to 6 hours

D) 6 to 8 hours

E) More than 8 hours

Design Pattern

m “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.” -- Christopher Alexander

m Each pattern has 4 essential elements:
" A name
" The problem it solves
" The solution
" The consequences

Let’s start with some “Micro-Patterns” (1)

m Name: Most-wanted holder

m Problem: Want to find the “most wanted” element of a
collection.

m Solution: Initialize most-wanted holder to first element.
Compare every other element to value in most-wanted
holder, replace if the new value is better.

Thing mostWanted = things[0];
for (int i =<:7; i < things.length ; i ++) {
if (thing[i].isBetterThan(mostWanted)) ({

mostWanted = thing[i];

—————

Let’s start with some “Micro-Patterns” (2)

m Name: One-way flag

—_—

m Problem: Want to know if a property is true/false for every
element of a collection.

m Solution: Initialize a boolean to one value. Traverse the
whole collection, setting the boolean to the other value if an

element violates the property. a
— \—x

boolean allvValid = true;

for (Thing thing : things) {
if (!thing.isValid()) {
allvalid = false; by~

Let’s start with some “Micro-Patterns” (3)

m Name: Follower
m Problem: Want to compare adjacent elements of collection.

m Solution: As you iterate through a collection, set the value of
the follower variable to the current element as the last step.

£l

—

boolean collectionInOrder = true; < — DAe- com
Thing follower = null; /
for (Thing thing : things) {

if (follower != null &&

)thing.isBiggerThan({ollower)) {

collectionInOrder = false;

}

follower = thing;

“Design Patterns” focus on object-level

m Relate to relationships between classes & objects
= |sA (inheritance) and HasA (containment) relationships

m Many of these seem obvious (in hind sight)

" The power is giving these names, codifying a best practice
solution, and understanding their strengths/limitations.

e
Strategy

m Intent: define a family of algorithms, encapsulate each one,
and make them interchangable. Strategy lets the algorithm
vary independently from clients that use it.

m Use the strategy pattern when:
" Many related classes differ only in their behavior.
" You need different variants of an algorithm (e.g., trade-offs)
" An algorithm uses data that clients shouldn’t know about

= E.g., encapsulate the algorithm data from client

= A class defines multiple behaviors and these are
implemented using conditionals.

Strategy Pattern

m Solution
" Strategy abstract base class exposes algorithm interface.
= Context object HasA Concrete Strategy object.

" Context object invokes algorithm interface from strategy.

strate h“>7q
Contexl o £l ‘Dl/ Strategy /
Contextinterface!) —» Y/, stlg-:rrﬁrhn?rnre.'fa-::ﬂfj/

\
Zl\'ts}\ or inbarchuee

ConcreteStrategy A Conc reteﬂtralegyﬁ ConcreteStrategyC
R e —

Algorthminterlace!) Algarithminiarface() Algorithminterfacel)

10

Predator / Prey simulation .. .1 ti.e

m The simulation progresses in units of time, called 'epochs’.

m A Cell has a given amount of vegetation, which is a non-negative value.

e

Each epoch, the vegetation grows to: previousValue * proportionalGrowthRate +
linearGrowthRate

® Each animal can eat up to vegetation / (2 * number of animals) S
" There is a maximum amount of vegetation that a cell can hold

m Rabbits eat vegetation. < S

= A rabbit will eat up to its share of the vegetation or (half its weight + 1),
. : — _—— —
whichever is less

= |fit doesn't eat enough, it loses weight, and accumulates a 'hungerDeficit’
= The larger the hunger deficit, the more likely that the rabbit dies of hunger
= |f the rabbit has plenty of food it gains weight

= |f the rabbit is large enough, it reproduces

1"

Wolves eat (mostly) bunnies

Ratlils . 252

12

Tracking number of objects of given kind

1 <oy
<
m Allocate a static integer variable

e—

m Increment this variable in the constructor

m Decrement this variable when you are done with the object

13

Unix Filesystems

m Are generally tree-like
m Therootis called: /
|
|

/-——~_——

Leaf nodes are files
Non-leaf nodes are directories

14

Working with Files

m touch —create an empty file with a given name
= E.g., touch blah

m rm-remove a file of a given name
= E.g.,rm blah

mE Mmv-rename a file from one name to another

= E.g.,, mvold_filename new_filename

15

Paths: two kinds

m Absolute paths start from:

" Filesystem root: fusr/bin/tail
" Home directories::/temp/ﬁle, ~username/foo/bar
m Relative paths start from the current working directory:

" filename — 1 cuod

= dirnamel/dirname2/filename

" (pwd — print current working directory)

m Special path elements:
= —current working directory
= . —uponedirectory

16

Navigating the filesystem

m cd - change directory
m mkdir — make (e.g., create) directory
m rmdir — remove directory

17

