
 

Lecture Handout 

Week 15: Dec. 7 / Dec 9, 2015 

 

Reminder: CS 105 Final Exam 
Thursday, December 17, 1:30pm – 4:30pm 

Rooms and TA Review Session TBA on CS 105 website 

 

 
A major theme in CS 105 has been how you process data.  Data processing 
can be done with several different tools, ranging from extremely simple to 
overwhelmingly complex: 
 

 

Tool 

Maximum Data Size 
Significant performance 

degradation after approximately: 

1. 
 
 

2. 
 
 

3. 
 
 

4. 
 
 

 

 
One of the most impactful ways to share the results of your data processing 
is through data visualization. 
 

 Excel provides basic data visualization through simple charts: bar 
charts, pie charts, line charts, and their variations. 

 Excel limits your ability to create a custom visualization. 
 

 d3.js is a ______________________________________________. 

 d3.js requires explicit instructions to draw each element of a 
visualization: every line, box, arc, text and circle corresponds to a 
line of source code. 

 

 
Terminology: A JavaScript library is JavaScript code that: 
 
  1. 
 
  2.   
 
  3.  

Every d3.js visualization is made up of three major components: 
 
Component #1: _______________ 

 The processed data you intend to visualize 

 Nearly always an array of objects or a format that is easily converted 
to an array of objects (eg: CSV exported from Excel) 

 
Component #2: ______________________ 

 JavaScript source code that sets up the visualization in a standard 
way; often copied/pasted between projects. 

 Will be provided in CS 105. 
 
Component #3: ______________________ 

 JavaScript source code that draws the individual points of data on 
the visualization. 

 Every line, box, arc, text, and circle corresponds to a series of 
JavaScript statements that render the visualization. 

 
Snippets of each of these three components are shown here: 
 

1 

2 

3 

4 

.. 

15 

16 

17 

 

18 

19 

20 

21 

22 

23 

 

25 

 

.. 

76 

77 

78 

79 

80 

81 

.. 

var games = [ 

  { score: [4, 1],  opponent: "Oakland" }, 

  { score: [1, 0],  opponent: "Illinois State" }, 

  { score: [5, 2],  opponent: "TCU" }, 

... 

]; 

 

var margin = { top: 50, right: 0, 

               bottom: 100, left: 150 }, 

    width = 3000 - margin.left - margin.right, 

    height = 3200 - margin.top - margin.bottom; 

 

var svg = d3.select("#chart") 

            .append("svg") 

            .attr("width", width + margin.left 

                                 + margin.right) 

            .attr("height", height + margin.top 

                                   + margin.bottom) 

... 

svg.selectAll() 

   .data( games ) 

   .enter() 

   .append("rect") 

   .attr("x", function (d, i) { return d.score[0]; }) 

   .attr("y", function (d, i) { return d.score[1]; }) 

... 

 

Simple 

Complex 



The code on lines 76-81 is central to the third component, actually drawing 
the visualization.  All d3.js visualizations will follow the same pattern of three 
steps: 
 
Step #1: Select the area of the svg (using .selectAll), pass the data that is 

going to be visualized (using .data(games), where games is the array of 

objects that will be visualized), and begin processing that data (using 
.enter). 

…as a general rule, this code will always be the same except changing out 
games with the variable name that contains your data: 
 

76 

77 

78 

svg.selectAll() 

   .data( games ) 

   .enter() 

 
Step #2: Select the shape you want to draw about each point in your dataset.  
In CS 105, we will cover rectangles ("rect") and circles ("circle"). 
 

79    .append("rect") 

 
Step #3: Add data-point specific attributes about each data point from your 
data set about how you want it to appear on the visualization.  This is done 
via the .attr function, which takes in two arguments: 

- The name of the attribute (eg: "x") 

- A function that computes the value of the attribute based on the data 
point.  This function has two arguments itself: 

o d: Your data point, a single element in your data array 

o i: The index your data point appears in the data array 
 

80 

81 

.. 

   .attr("x", function(d, i) { return ___________; }) 

   .attr("y", function(d, i) { return ___________; }) 

... 

 
Step 3 – Example: In our example, a single element of our data is: 
 

2   { score: [4, 1],  opponent: "Oakland" }, 

 
Therefore, a valid function would be anything that returns information from 
that JavaScript object: 
 

 function (d, i) { return d.score[0]; }  // returns 4 

function (d, i) { return d.score[1]; }  // returns 1 

function (d, i) { return d.opponent; }  // "Oakland" 

 
 
 
 
 
 

Attributes that are applied to a rectangle ("rect"): 
 

Attribute Name Value 

 
 

 

 
 

 

 
 

 

 
 

 

 
Attributes that are applied to a rectangle ("circle"): 
 

Attribute Name Value 

 
 

 

 
 

 

 
 

 

 
Style attributes that can be applied to either a rectangle or a circle (using 
.style instead of .attr)  
 

Attribute Name Value 

 
 

 

 
 

 

 

 

MPx: An Extra Credit MP! 
Released on Monday, Dec. 7; due before the start of the final exam. 

Allows the replacement of a single MP (or +5 points in CS 105). 

 

 

Reminder: CS 105 Final Exam 
Thursday, December 17, 1:30pm – 4:30pm 

Rooms and TA Review Session TBA on CS 105 website 

 


