o5

TA Lecture Notes
October 1, 2014

Running Time — Searching and Sorting
Important questions:

How many steps?
What is the worst case?
How many steps do may need to check if your data is in there.

Linear Search:

We go through data points one by one
‘n’ steps if there is n pieces of data
Running time: O(n), it does not matter if we lose one /two when n is a million

Binary Search:

Requires the data to be sorted

Split the data to be searched in, in half every time

Worst happens in worst case? 8 pieces of data -> 3 steps

16 pieces of data -> 4 steps

32 pieces of data -> 5 steps

Hence doubling the data just takes 1 extra step

log,(n) steps or Ig(n) (i.e. base 2 log) steps for n pieces of data, Ig(n) is smaller than n, so
the running time of a binary search is smaller than that of linear search

So if we have sorted data, binary search is definitely faster than linear search

Running time: O(lg(n))

Selection sort:

Go to the first element and check it against all elements to see if it is the smallest. If it
isn’t, swap it with the smallest element.
So after the first pass, smallest is at the correct position and data size to be sorted is
reduced by 1
Now start with the second element and go through all elements that are unsorted
Hence

o First pass n steps
Second pass (n-1) steps
Third pass (n-2) steps and so on until the last pass takes 1 step
Sum of numbers up to n and is given by n(n+1)/2

o
o
o
o Sorunning time is O(n”2) basically, since for large n, n"2 >> n

Example: (first pass)
29,64,73, 34, 20,
20, 64,73, 34,29,
20,29,73, 34,64
20,29, 34,73, 64
20,29, 34,64,73

TA Lecture Notes
October 1, 2014

0
“

o
n

Bubble sort:

e Start at the first element

e Check and swap each pair of elements if a swap is needed

o Now the last element is in the correct place — the element at the end, largest number

bubbled it’s way to the correct spot (hence called bubble sort)
o Forthe second step, we don’t have to check for the last element
e Hence
o Firsttime n steps

Second time (n-1) steps
Third time (n-2) steps and so on until the last pass takes 1 step
Sum of numbers up to n and is given by n(n+1)/2
So running time is O(n”2) basically, since for large n, n"2 >> n

O O O O

Merge sort:
e Split the data into 2 parts successively until you reach 2 elements in every sub-array

e Sort each of the small arrays separately
e Start merging the sub-arrays and while merging, do it smartly
e After merging, we need to sort it again
e This is O(nlog(n)) algorithm
Example:

Consider the following array of numbers: 27 10 12 25 34 16 15 31

divide it into two parts: 27 10 12 25 34 16 15 31
divide each part into two parts: 27 10 12 25 34 16 15 31
divide each part into two parts: 27 10 12 25 34 16 15 31

merge (cleverly-!) parts: 10 27 12 25 16 34 15 31

o5

TA Lecture Notes
October 1, 2014

merge parts: 10 12 25 27 15 16 31 34

mergepartsintoone: 10 12 15 16 25 27 31 34

Running time:

Hence, the running time of all these different sorts:

n+n—-D+Mm-2)+n+3).....=01n?

Explaining the graph:

Sorting takes much longer than searching on a sorted array

The purple line in the graph represents n” which is very slow

Binary search is way faster than linear search — Look at [g(n) and n

If we want to search the data only once, we can do linear search but if we have to
search the data more than once, it is worth sorting the data to then use binary search

Cs TA Lecture Notes
105| October 1, 2014

Images
How are images stored in the computer?
e |mages are a grid of pixels
e 1 bitis allotted to every pixel for black (represented by 1) and white images
(represented by 0) - Bitmap format

What about color images?
e Three primary colors — Red, Green and Blue
e Every color can be represented as a combination of these in different proportions
e Hence we can represent colors as Hexa-decimal (base 16 system 0 to 9 and a,b,c,d,e,f)
digits like ffO000 — using 6 digits

Colors using hexadecimal system (two digits used for every color):

Color — Hexa Decimal % Red % Green % Blue Color
ff0000 100 0 0 Red
00ff00 0 100 0 Green
feffff 100 100 100 White
000000 0 0 0 Black
ffffoo 100 100 0 Yellow
ffooff 100 0 100 Magenta

Jsons in JavaScript (JS object notations) —

‘D5’ is a poor way of saying 5 of diamonds. We could say that the card has rank of 5 and suit of
diamonds Object makes that easier. Multiple data / variables can be placed in a single variable.
Like ‘card’ object would have ‘rank’ and ‘suit’.

It did not make sense to represent a card as a string completely. Hence we can have key and
value pairs for a variable.

Examples:
var card = { rank: “5”, suit: “Diamond”};

//where rank and suit are ‘keys’ which are just variable names
and then the value of that key.

var weather = {high: 72, low: 49};

var average = (weather.high+weather.low)/2;

Cs TA Lecture Notes
105| October 1, 2014

Sample Function:
function distance(11,12)
{

var dx = 12.x - 11.x; // change in x

12.y - 1l.y; // change in y

var dy

// distance formula from coordinate geometry
var d = Math.sqgrt ((dx*dx)+ (dy*dy)) ;

return d;
var 11 = {x:30 , y:50};

var 12 { x:40 , y:=-30 };
var d = distance(11,12); //returns 80.6

