

Midterm #1

Tuesday, Oct. 7, 2014
8:00pm —9:30pm

Midterm #1 Conflict Exam Signup

Posted on course website tonight!
Deadline: Tuesday by 9:00pm

CS 105: Improved

9am Lecture Video Recorded
TA Lecture Notes

Lecture Review

Which conditional does not
contain an error in the code?

A)if (a = 50)
B)if (x =! 40)
C)if (¢ > 4 || ¢ < 2)
D)if (x > 20 & > 30)
E) IF (y <= 50)

Which conditional does not
contain an error in the code?

A)if (a = 50)
B)if (x =! 40)
C)if (¢ > 4 || ¢ < 2)
D)if (x > 20 & > 30)
E) IF (y <= 50)

var a =
[[2, 31, [4, 3], [6, 2]]’

What is the valueofa[1l] [1]"?
A) 2

B) 3
C)4
D)5
E) 6

var a =
[[2, 31, [4, 3], [6, 2]]’

What is the valueofa[1l] [1]"?
A) 2

B) 3
C)4
D)5
E) 6

Searching

How do | search for a string inside

an array?
var s = "carrot'";
var fruits = ["apple", "banana",
"grape'", "orange",

"strawberry"];

How do | search for a string inside

an array?
var s = "carrot";
var fruits = ["apple", "banana",
"grape'", "orange',

"strawberry“] ;

// for each element in the array:
// check if the element is a match

var s = "carrot";

var fruits = ["apple", "banana",
"grape'", "orange',
"strawberry“];

for (var 1 = 0; 1 < fruits.length;
i++)
{
if (s == fruits[i])

{

return true;

}

return false;

function linearSearch(s, list)
{
for (var 1 = 0; 1 < list.length;
it+)

if (s == list[i])
{

return true;

}

return false;

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100:

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100: check up to 100 elements.

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100: check up to 100 elements.
e 1010]0}

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100: check up to 100 elements.
—1000: check up to 1000 elements.

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100: check up to 100 elements.
—1000: check up to 1000 elements.

Linear Search

* Move sequentially through an array,
checking each element for a match.

* |f the length of the array is...
—100: check up to 100 elements.
—1000: check up to 1000 elements.

* [f the list doubles, it takes twice as
long.

Better Searching?

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

“apple”
“banana”
“blackberry”
“blueberry”
“grape”
“kiwi”
“lemon”
“orange”

“strawberry”

“carrot”

“apple”
“banana”
“blackberry”
“blueberry”
“grape”
“kiwi”
“lemon”
“orange”

“strawberry”

“carrot”

“apple” “carrot”
“banana”

“blackberry”

“blueberry”

“grape”

“kiwi”

“lemon”

“orange”

“strawberry”

“apple” “carrot”
“banana”

“blackberry”

“blueberry”

“grape”

“kiwi”

“lemon”

“orange”

“strawberry”

“apple” “carrot”
“banana”

“blackberry”

“blueberry”

“grape”

“kiwi”

“lemon”

“orange”

“strawberry”

“apple” “carrot”
“banana”

“blackberry”

“blueberry”

“grape”

“kiwi”

“lemon”

“orange”

“strawberry”

“apple”
“banana”
“blackberry”
“blueberry”
“grape”
“kiwi”
“lemon”
“orange”

“strawberry”

“carrot”

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

* |f the length of the array is...
—9:

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

* |f the length of the array is...
—9: up to 3 comparisons

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

* |f the length of the array is...
—9: up to 3 comparisons

—18:

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

* |f the length of the array is...
—9: up to 3 comparisons
—18: up to 4 comparisons

Binary Search

* |f the length of the array is...
—9: up to 3 comparisons
—18: up to 4 comparisons
—100: up to 7 comparisons

Binary Search

* |f the length of the array is...
—9: up to 3 comparisons
—18: up to 4 comparisons
—100: up to 7 comparisons
—1000: up to 10 comparisons

Binary Search

* |f the length of the array is...
—9: up to 3 comparisons
—18: up to 4 comparisons
—100: up to 7 comparisons
—1000: up to 10 comparisons
—1,000,000: up to 20 comparisons

Binary Search

* |f the length of the array is...
—9: up to 3 comparisons
—18: up to 4 comparisons
—100: up to 7 comparisons
—1000: up to 10 comparisons
—1,000,000: up to 20 comparisons
—7,000,000,000: only 33 comparisons!

Binary Search

e Look at an element in the center of an
array. Remove the half of the array
where the element would not exist.

Binary Search

* Look at an element in the center of a
sorted array. Remove the half of the
array where the element would not exist.

Binary Search

* Look at an element in the center of a
sorted array. Remove the half of the
array where the element would not exist.

* [f you double the size of the data, only
one additional comparison is needed.
— Allows for fast processing of big data.

Sorting

Sorting vs. Searching

* Searching is “easy”:
—Unsorted =2 Linear Search
—Sorted =2 Binary Search

e Sorting is “hard”:
—Hundreds of different algorithms

Selection Sort

 Find the element that is
alphabetically first in the list.

* Swap that element with the first
element in the list.

* Repeat for the 2"d element.

“lemon”
“grape”
“apple”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon” _

“grape”
“apple”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon” _

“grape”
“apple”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon” _

“grape”
“apple”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple” _
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“lemon”
“grape”
“apple”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

“apple”
“grape”
“lemon”
“strawberry”
“banana”
“kiwi”
“blackberry”
“orange”

“blueberry”

Popular Sorting Algorithms

* Selection Sort
* Bubble Sort

* Merge Sort

* Quick Sort

* Radix Sort

