
CS 105 
Week 5 



Midterm #1 

Tuesday, Oct. 7, 2014 
8:00pm – 9:30pm 



Midterm #1 Conflict Exam Signup 

Posted on course website tonight! 
Deadline: Tuesday by 9:00pm 



CS 105: Improved 

9am Lecture Video Recorded 
TA Lecture Notes 



Lecture Review 



Which conditional does not 
contain an error in the code? 

A) if (a = 50)  

B) if (x =! 40) 

C) if (c > 4 || c < 2) 

D) if (x > 20 & > 30) 

E) IF (y <= 50) 
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var a = 

 [ [2, 3], [4, 5], [6, 2] ]; 

What is the value of a[1][1]? 
A) 2 

B) 3 

C) 4 

D) 5 

E) 6 
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Searching 



How do I search for a string inside 
an array? 

var s = "carrot"; 

var fruits = ["apple", "banana", 

              "grape", "orange", 

              "strawberry“]; 

 

 

 



How do I search for a string inside 
an array? 

var s = "carrot"; 

var fruits = ["apple", "banana", 

              "grape", "orange", 

              "strawberry“]; 

 

// for each element in the array: 

//   check if the element is a match 



var s = "carrot"; 

var fruits = ["apple", "banana", 

              "grape", "orange", 

              "strawberry“]; 

 

for (var i = 0; i < fruits.length; 

     i++) 

{ 

   if (s == fruits[i]) 

   { 

      return true; 

   } 

} 

return false; 



function linearSearch(s, list) 

{ 

  for (var i = 0; i < list.length; 

       i++) 

  { 

     if (s == list[i]) 

     { 

        return true; 

     } 

  } 

  return false; 

} 



Linear Search 

• Move sequentially through an array, 
checking each element for a match. 

 

• If the length of the array is… 

–100: 
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Linear Search 
• Move sequentially through an array, 

checking each element for a match. 

 

• If the length of the array is… 

–100: check up to 100 elements. 

–1000: check up to 1000 elements. 

 

• If the list doubles, it takes twice as 
long. 



Better Searching? 



Binary Search 

• Look at an element in the center of an 
array.  Remove the half of the array 
where the element would not exist. 
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Binary Search 

• If the length of the array is… 

–9: up to 3 comparisons 

–18: up to 4 comparisons 

–100: up to 7 comparisons 

–1000: up to 10 comparisons 

–1,000,000: up to 20 comparisons 

–7,000,000,000: only 33 comparisons! 



Binary Search 

• Look at an element in the center of an 
array.  Remove the half of the array 
where the element would not exist. 



Binary Search 

• Look at an element in the center of a 
sorted array.  Remove the half of the 
array where the element would not exist. 



Binary Search 

• Look at an element in the center of a 
sorted array.  Remove the half of the 
array where the element would not exist. 

 

• If you double the size of the data, only 
one additional comparison is needed. 
– Allows for fast processing of big data. 



Sorting 



Sorting vs. Searching 

• Searching is “easy”: 
–Unsorted  Linear Search 

– Sorted  Binary Search 

 

• Sorting is “hard”: 

–Hundreds of different algorithms 



Selection Sort 

• Find the element that is 
alphabetically first in the list. 

 

• Swap that element with the first 
element in the list. 

 

• Repeat for the 2nd element. 
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Popular Sorting Algorithms 

• Selection Sort 

• Bubble Sort 

• Merge Sort 

• Quick Sort 

• Radix Sort 


