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Dynamics, two examples of the use of ode45. 

 

 

Numeric Integration using trapz and quad/quadl 

functions. 

 

 

 

 

 

 

Readings:  Matlab by Pratap Chapter 5.4,5.5   
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1. Problem Definition 

    Use Matlab to plot the velocity of a free-falling object.  Assume that  

    the object is near the earth’s surface, so that the force due to 

gravity is given by mass * g where 9.8 m/s2. Further assume that air 

friction is present and that the force due to air friction satisfies Fair 

friction  = b * v2  , where b is constant and v is the velocity of the 

falling object (downward is negative velocity). 

 

2. Refine, Generalize, Decompose the problem definition 

 (i.e., identify sub-problems, I/O, etc.) 

 

  Mass of object is 70Kg , acceleration due to gravity is -9.8 m/s2    
and the coefficient of air friction b = .25 Kg/s. At time = 0 assume 
v=0, that is, 

   v(0) = 0        (initial condition) 
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From Newton’s 2
nd

 law, the sum of the forces on the falling object 

equal it’s mass times acceleration: 

2. (continued) 

)(**
)(

* 2 tvbgm
dt

tdv
m 

)(*)/(
)( 2 tvmbg

dt

tdv




6&7-5 

2. (continued) 

Using calculus we can rewrite the differential equation in the 

form: 
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and integration  of both sides gives, 
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2. (continued) 

Since we can write tanh(x) as: 
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when x -> infinity tanh(x) -> 1 and so  

the falling body has a terminal velocity of: 
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3. Develop Algorithm (processing steps to solve problem) 

[t, v] = ode45(@aux_function, time, initial_condition); 

Rather than using calculus to solve this problem we can use a 

built-in Matlab function… ode45. The format of this function is: 

aux_function:   user created function that computes the derivate  

time:  a vector [start, stop] for the range of time of the solution 

initial_condition:  initial value v(start) 

t:  solution column vector of time values on range [start, stop] 

v:  solution column vector velocity values at times t  
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4. Write the “Function" (Code) 

(instruction sequence to be carried out by the computer) 

Use the Matlab editor to create a file vprime.m . 

function vp = vprime(t,v) 

%  function vp = vprime(t,v) 

% compute dv/dt 

m = 70; 

g = 9.8; 

b = .25; 

vp = -g +(b/m)*v.^2; 

)(*)/(
)( 2 tvmbg

dt

tdv

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5. Test and Debug the Code 

 To test our program in Matlab, we will plot velocity versus 

time for t=0 seconds to t=10 seconds,   

 plot(t,v) 

 

6. Run Code 

To run our program we will use ‘ode45’ as follows: 

 

 

>> [t, v] = ode45(@vprime, [0,30], 0); 

>> plot(t,v) 

       (See plot on next slide.) 

  

[t, v] = ode45(@aux_function, time, initial_condition); 



As time increases the  velocity  levels out around -52.3818 m/s. This velocity is 

called the terminal velocity of the object. This agrees with the solution since   

v(infinity) = -sqrt(m*g/b)  =  -52.3832 
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1. Problem Definition 

    Use Matlab to plot both the velocity and position(height) of a free-

falling object.  

2. Refine, Generalize, Decompose the problem definition 

 (i.e., identify sub-problems, I/O, etc.) 

 

  Mass of object is 70Kg , acceleration due to gravity is 9.8 m/s2    
and the coefficient of air friction b = .25 Kg/s.  

     Initial conditions: at time = 0 assume v=0 and y = 2000m.  

 

 Plot the height y and the velocity  v versus time for t = 0 to t = 30 
seconds.  
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3. Develop Algorithm (processing steps to solve problem) 

 The ODE describing the motion of a falling object is: 
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which is equivalent to the following system of ODEs: 
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4. Write the “Function" (Code) 

(instruction sequence to be carried out by the computer) 

Use the Matlab editor to create a file yvprime.m . 

Function yvprime has two inputs: 

 t:  a scalar value for time 

 yv:  a vector containing  [y , v] values at time = t 

Function yvprime has one output: 

           yvp: a vector containing [ dy/dt ; dv/dt] 

function yvp = yvprime(t, yv) 

%  function yvp = yvprime(t, yv) 

m = 70; 

g = 9.8; 

b = .25; 

y = yv(1); 

v = yv(2); 

yvp = [v ;  (-g +(b/m)*v.^2)]; 

2v
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
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6. Run Code 

To run our program we will use ‘ode45’  in a slightly different 

way as follows: 

 

[t, yv] = ode45(@yvprime, [0,30], [2000;0]); 

 

  

     [t, yv] = ode45(@aux_function, time, initial_conditions); 

aux_function:   user created function that computes the derivates 

time:  a vector [start stop] for the range of time of the solution. 

initial_condition:  initial value(s) [ y(start) ; v(start)] 

t:  solution column vector of time values from [start, stop] 

yv:  solution matrix with two columns [ y , v] representing  values 

y in the first column and v in the second at time t  
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5. Test and Debug the Code 

 To test our program in Matlab, we will plot velocity 

versus time   

 >> plot(t,yv( : , 2 )) 

 and we will plot y versus time, 

>> plot(t,yv( : , 1)) 
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5. Test and Debug the Code 

 Matlab produces a discretized solution  

 >> yv 

>> t 
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Matlab offers a family of ODE solvers that use different 

methods to solve ODEs: 

ode45, ode15i, ode15s, ode23, ode23s, ode23t, 

ode23tb, ode113 

 

Matlab does NOT guarantee that the solution any of 

the solvers produces is accurate.  

 

Knowledge that a particular solver will produce an 

accurate solution for a given ODE is beyond the scope 

of this course. CS 357 / CS 457 are courses in 

numerical analysis that cover methods of solving 

ODEs.  
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 Most integrals arising from solutions of problems in 

engineering and the physical sciences cannot be 

represented in "closed form"- they must be evaluated 

numerically. 

• For a function of a single variable, we seek an 

approximation to the area "under" the curve: 

a b 

Sum of the “signed” areas  f ( x ) dx 
a 

b 

 

x 

f(x) 

+ 

- 

Definite Integral 

The Matlab functions: quad (quad8) and trapz only apply to 

continuous functions f(x) of one variable  -   x   ( a scalar). 
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f(x) 

x0  = a x1 xn = b  x2 x3 Xn-1 . . . 
In this case, we approximate the integral by adding the 

areas of a set of approximating rectangles.  

y 

x 

Approximation of f(x) by using constant functions on the 

 intervals [x
k-1

 , x
k 

] (not a good approximation). 

y1 

y2 
y3 

yn 

   f ( x )  f ( x k 
) x k  1  x  x k 

, k  1 , 2 , L , n 
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In this case, we approximate the integral by adding the areas 

of a set of approximating trapezoids. 

f(x) 

x  =a 0 x 1 x  =b  n 2 x n-1 x . . . 

y0 

y1 

y2 

Approximation of f(x) by using a linear function on 

the intervals [x
k-1

 , x
k 

] (a better approximation). 

y 

x 

Trapezoidal Rule 
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In this case, we approximate the integral by adding the areas 

under a set of approximating parabolas. 

Approximation of f(x) by using 

a quadratic function on the 

 intervals [x
k-1

 , x
k+1 

]  ( better approximation). 

x 

Simpson's Rule 

(parabola) 

x 
k 

x 
k +1 

x 
k-1 

y 

y=f(x) 
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The two built-in Matlab functions (we will use in CS101) 

for integration are trapz and quad.  

•The function trapz trapezoidal rule (Pratap p. 152) is 

used when we don’t know f(x) explicitly but we have a 

vector x which is a partition of the interval [a,b] and a 

vector y = f(x). That is, we know the y values of f(x) only 

for some discrete set of x values.   

•We can use quad(Pratap 5.4 adaptive Simpson’s Rule) or 

quadl (Pratap 5.4 adaptive Lobatto) when we know the 

function f(x).  That is, f(x) is a built-in Matlab function or a 

user defined function. 
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Example: 

Use Matlab to compute the integral: 

f ( x ) dx 
a 

b 

 
where f(x) = sin(x) and a = 0 , b = pi. 

>> format long 

>> x = linspace(0,pi,1000); 

>> y = sin(x); 

>> trapz(x,y) 

ans = 

 1.99999989714020 
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Example: 

Use Matlab to compute the integral: 

f ( x ) dx 
a 

b 

 

where f(x) = sin(x) and a = 0 , b = pi. 

>> quadl(@sin,0,pi) 

ans = 

 1.99999997747113 
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We can use the Matlab function ode45 to solve a 

system of ordinary (not partial) differential 

equations. 

For numeric integration we can use quadl when we 

know the function f(x). The function trapz is used 

when we don’t know f(x) explicitly. 


