Lectures 68/

4 Wt 00 e

Dynamics, two examples of the use of ode45.

Numeric Integration using trapz and quad/quadi

Readings: Matlab by Pratap Chapter 5.4,5.5

mAm1eS: T GUoluli ol sl Trcesses

1. Problem Definition
Use Matlab to plot the velocity of a free-falling object. Assume that
the object is near the earth’s surface, so that the force due to
gravity is given by mass * g where 9.8 m/s?. Further assume that air
friction is present and that the force due to air friction satisfies F_;,
viction = P * V2 ,where b is constant and v is the velocity of the
falling object (downward is negative velocity).

2. Refine, Generalize, Decompose the problem definition
(i.e., identify sub-problems, 1/0, etc.)

Mass of object is 70Kg , acceleration due to gravity is -9.8 m/s?
and the coefficient of air friction b = .25 Kg/s. At time = 0 assume
v=0, that is,

v(0)=0 (initial condition)
68.7-3

i ralllng onject

2. (continued)

From Newton’s 2"d lJaw, the sum of the forces on the falling object
equal it’s mass times acceleration:

%
m
' -mg
m*w =—m*g+b*v(t)
dt
M=—g +(b/m)*v(t)

dt 6&7-4

i kA

2. (continued)

INGIoOMER

Using calculus we can rewrite the differential equation in the

dv=(

—g+—
m

b

and integration of both sides gives,

v(t) = — M9 tanh| 9
b mg
.V b

4)

*y° (t)jdt

T bv?2
m
' .mg

6&7-5

i ralllng onject

2. (continued)

Since we can write tanh(x) as:
e —e* 1-e™
e +e* 1+e™

when x -> infinity tanh(x) -> 1 and so 2
the falling body has a terminal velocity of: bv

tanh(x) =

mag m

V(OO) — b 1 g

6&7-6

4 el 016t IInGDem

3. Develop Algorithm (processing steps to solve problem)

Rather than using calculus to solve this problem we can use a
built-in Matlab function... ode45. The format of this function is:

[t, V] = oded5(@aux_function, time, initial_condition);

aux_function: user created function that computes the derivate
time: a vector [start, stop] for the range of time of the solution
initial_condition: initial value v(start)

t: solution column vector of time values on range [start, stop]
v: solution column vector velocity values at times t

6&7-7

ralling oloject

4. Write the “Function” (Code)
(instruction sequence to be carried out by the computer)

Use the Matlab editor to create a file vprime.m.
function vp = vprime(t,v)

% function vp = vprime(t,v)
% compute dv/dt

m = 70;
g = 9.8; M:—g+(b/m)*v2(t)

b = .25; dt
vp = -g +(b/m)*v.*2;

6&7-8

ralling oloject

5. Test and Debug the Code

To test our program in Matlab, we will plot velocity versus
time for t=0 seconds to t=10 seconds,

plot(t,v)

6. Run Code

To run our program we will use ‘ode45’ as follows:
[t, v] = oded45(@aux_function, time, initial_condition);

>> [t, v] = oded45(@vprime, [0,30], 0);

>> plot(t,v)
(See plot on next slide.)

6&7-9

2lllny objeet

0
a0 b\ ST]
20F N R R
z | | | | |
g0 N s e
g . .
AOF N S S
L S e e
'60 i i i i
0 5 10 15 20 25 30
time

As time increases the velocity levels out around -52.3818 m/s. This velocity is

called the terminal velocity of the object. This agrees with the solution since
v(infinity) = -sqrt(m*g/b) = -52.3832

4 154 el oSy 20 S

1. Problem Definition
Use Matlab to plot both the velocity and position(height) of a free-
falling object.

2. Refine, Generalize, Decompose the problem definition
(i.e., identify sub-problems, 1/0, etc.)

Mass of object is 70Kg , acceleration due to gravity is 9.8 m/s?
and the coefficient of air friction b = .25 Kg/s.

Initial conditions: at time = 0 assume v=0 and y = 2000m.

Plot the height y and the velocity v versus timefort=0tot=30
seconds.

6&7-11

4 ralllng objectz

3. Develop Algorithm (processing steps to solve problem)

The ODE describing the motion of a falling object is:

2 2
m (iltzy = —mg + b(ﬂj

which is equivalent to the following system of ODEs:

dv b , o

= V
dt J m ' -mg

V 2
T bv

6&7-12

4 ralllng objectz

4. Write the “Function™ (Code)
(instruction sequence to be carried out by the computer)

Use the Matlab editor to create a file yvprime.m.
Function yvprime has two inputs:

t: a scalar value for time

yv: a vector containing [y, v] values at time = t
Function yvprime has one output:

yvp: a vector containing [dy/dt ; dv/dt]
function yvp = yvprime(t, yv)
% function yvp = yvprime(t, yv) dy

m = 70; V

g = 9.8; dt

b = .25;

y = yv(1); ﬂ:_g -I—BVZ
v = yv(2); dt m

yvp = [v; (-g +(b/m)*v.*2)]; 6&7-13

4 ralllng objectz

6. Run Code
To run our program we will use ‘ode45’ in a slightly different
way as follows:

[t, yv] = ode45(@yvprime, [0,30], [2000;0]);

[t, yv] = ode45(@aux_function, time, initial_conditions);

aux_function: user created function that computes the derivates
time: a vector [start stop] for the range of time of the solution.
initial_condition: initial value(s) [y(start) ; v(start)]

t: solution column vector of time values from [start, stop]

yv: solution matrix with two columns [y, v] representing values
y in the first column and v in the second at time t

6&7-14

4 ralllng objectz

5. Test and Debug the Code

To test our program in Matlab, we will plot velocity
versus time

>> plot(t,yv(:, 2)))
and we will plot y versus time,
>> plot(t,yv(:, 1))

; 600
25 30 0
time

2000
0 1800
aob\ o 1600
= :
k<) :
g. . . .q{:, :
Ta0l \ 1200 |
2 :
wf 1000 3
sl 800 j
60 ; ‘ ‘ ‘ :
0 5 10 15 20 5

10

15 20 25 30
time

15

4 ralllng objectz

5. Test and Debug the Code

Matlab produces a discretized solution

>> yv
>> t

o o o oo oo o oo a0

]

LO0000512 62983340
LO00010Z252 597680
LO000153733596519
LO000205051953 59
LAO000461366589558
LO000717Ee318375Y
LO000973998Y7956
LOO0123031172156
LAO002511588643151
LO00379346114146
LO00507503558514E
LO0068356610561357

1.0e+003 *

N T e e e = = S S STy o

LO0gdoooaaaaoooa
.599999999999957 1
LS99959999999590455
. 99595999333995541
. 595959599333997940
. 999999999959570
LS9999999995747 462
. 99595899333953515
. 9959599933392 5530
.99999999969053 1
LS99995999992 04573

o

0020000502377 29
LO00o00100475457
000000150713 156
LO0Q000Z00250915
LO000000452139558
LO00o00703325201
00000025451 6544
LO000001205705457
LO000002461645701
LO000037175591912

6&7-16

+ Matiab OIC Solvers

Matlab offers a family of ODE solvers that use different
methods to solve ODEs:

ode45, ode15i, ode15s, ode23, ode23s, ode23t,
ode23th, ode113

Matiab does NOT guarantee that the solution any of
the solvers produces is accurate.

Knowledge that a particular solver will produce an
accurate solution for a given ODE is beyond the scope
of this course. CS 357 / CS 457 are courses in

numerical analysis that cover methods of solving
ODEs.

6&7-17

‘.L AERGANNIBD AL

Most integrals arising from solutions of problems in
engineering and the physical sciences cannot be
represented in "closed form"- they must be evaluated
numerically.

* For a function of a single variable, we seek an
approximation to the area "under” the curve:

Definite Integral
f) 4

T m I b f(x) dx= Sum ofthe “signed” areas
+ a
-

a b X

S

The Matlab functions: quad (quad8) and trapz only apply to
continuous functions f(x) of one variable - x (a scalag). g

1 EnANMRUSITIRERIATE|ES

Approximation of f(x) by using constant functions on the
intervals [x,_, , X,] (not a good approximation).

y
A

f(X) Yn

Y3
Yo

Y1

B X

Xo =@ Xy X5 X3 . X1 X,=b

In this case, we approximate the integral by adding the
areas of a set of approximating rectangles.

f(x)= f(x,) x,.1<x<x,, k=1,2,... ,n

| EONRUSIOpanETS

Approximation of f(x) by using a linear function on
the intervals [x,_; , X,] (2a better approximation).

Yy Trapezoidal Rule
1 f(x)
X
Yo
_—
Y1
Yo
—
Xo =a X X . X . b
1 2 1 X X

In this case, we approximate the integral by adding the areas
of a set of approximating trapezoids.

6&7-20

JkegranD- S reranias

Approximation of f(x) by using
a quadratic function on the
intervals [x, 4 , X,,41] (better approximation).

Y 4 Simpson's Rule
y=F(x) (parabola)
r | > X
'xk—] xk ’xk+1

In this case, we approximate the integral by adding the areas
under a set of approximating parabolas.

6&7-21

0) yanl o melomg

The two built-in Matlab functions (we will use in C$101)
for integration are trapz and quad.

*The function trapz trapezoidal rule (Pratap p. 152) is
used when we don’t know f(x) explicitly but we have a
vector x which is a partition of the interval [a,b] and a
vector y = f(x). That is, we know the y values of f(x) only
for some discrete set of x values.

We can use quad(Pratap 5.4 adaptive Simpson’s Rule) or
quadl (Pratap 5.4 adaptive Lobatto) when we know the
function f(x). That is, f(x) is a built-in Matlab function or a
user defined function.

6&7-22

‘.L rincton - rapz

Example:
Use Matiab to compute the integral:

jabf (x) dx
where f(X) = sin(x) anda = 0, b =pi.

>>format long

>> x = linspace(0,pi,1000):
>>y = sin(X);

>> trapz(X,y)

ans =
1.99999989714020

6&7-23

‘.h FINCIOn - quat

Example:

Use Matiab to compute the integral:

| 1y an

where f(X) = sin(x) anda = 0, b =pi.

>> quadl(@sin,0,pi)
ans =
1.99999997747113

6&7-24

I) s e

e can use the Matlab function oded45 to solve a

system of ordinary (not partial) differential
equations.

For numeric integration we can use quadl when we

know the function f(x). The function trapz is used
when we don’t know f(x) explicitly.

6&7-25

