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What is Computational 
Biology/Bioinformatics?
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Computational biology and bioinformatics is an 
interdisciplinary field that develops and 
applies computational methods to analyze large 
collections of biological data, such as genetic sequences, 
cell populations or protein samples, to make new 
predictions or discover new biology.

https://www.nature.com/subjects/computational-biology-and-bioinformatics



Technology and Bioinformatics are 
Transforming Biology

Until late 20th Century

Hypothesis Generation 
and Validation

21th Century and Beyond

High throughput technologies

Hypothesis Generation 
and Validation

Algorithms



A Deluge of Data
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Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a 
complete (human) genome from end to end!

Genome
Millions -billions 
nucleotides

Next-generation
DNA sequencing

10-100’s million noisy reads
Reads: 30-1000 nucleotides

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG 
…

Making sense of this data absolutely requires the use and 
development of algorithms!
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Why Study Computational Biology?
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Interdisciplinary
Biology
Computer Science
Mathematics
Statistics

= FUN!

Why choose just 1?

Best Jobs Worst Jobs

1. Actuary 200. Newspaper reporter

2. Audiologist 199. Lumberjack

3. Mathematician 198. Enlisted Military 
Personnel

4. Statistician 197. Cook

5. Biomedical Engineer 196. Broadcaster

6. Data Scientist 195. Photojournalist

7. Dental Hygienist 194. Corrections Officer

8. Software Engineer 193. Taxi Driver

9. Occupational Therapist 192. Firefighter

10. Computer Systems 
Analyst

191. Mail Carrier

http://www.careercast.com/jobs-rated/jobs-rated-report-2015-ranking-top-200-jobs



“I can’t be as confident about computer science as I can 
about biology. Biology easily has 500 years of exciting 
problems to work on. It’s at that level.”

Donald Knuth
Professor emeritus of Computer Science at Stanford University
Turing Award winner
“father of the analysis of algorithms.”
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The usual computer science stuff, but especially 
• CS 125 (programming)
• CS 173 (abstract thinking)
• CS 225 (data structures)
• CS 374 (algorithms and models for computation)

A bit of statistics is helpful (e.g., CS 361)

CS 466: Introduction to Bioinformatics! Good if you 
know some biology, but you can take CS 466, and 
learn it there!

Coursework for Bioinformatics Research



Course Topic #1: Sequence Alignment

Question: How do we compare two genes/genomes?

vs.

Human Genome:

…ACTCGACTGAGAGGATTTCGAGCATGA… …ACTCAACTGAGATTCGAGCTTCAATGA…

Mouse Genome:

≈3.2 x 109 bp ≈2.8 x 109 bp
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Course Topic #2: Genome Assembly

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG 
…

Question: How do we put all the pieces back together?
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Course Topic #3: Phylogenetics

https://scientificbsides.wordpress.com/2014/06/09/inferring-tumour-evolution-2-comparison-to-classical-phylogenetics/

https://en.wikipedia.org/wiki/Phylogenetic_tree

Question: Can we 
reconstruct the evolutionary 
history of different 
species?

Question: Can we recover 
how a tumor has evolved 
overtime?
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Course Topic #4: Pattern Matching
Question: How do we start to make 
sense of all these sequences?

Suffix Trees

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Burrows Wheeler Transform

Motif Finding
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Course Topics

1. Sequence alignment
‘How do we compare two genes/genomes?’

2. Genome assembly
‘How do we put all the pieces back together?’

3. Phylogenetics
‘What is the evolutionary history of different sequences?’

4. Pattern matching
‘How do we start to make sense out of all these sequences?’
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Course Topics

1. Sequence alignment
Dynamic programming: edit distance

2. Genome assembly
Graphs: de Bruijn graph, Eulerian and Hamiltonian paths

3. Phylogenetics
Trees and distances: distance matrices, neighbor joining, hierarchical 
clustering.
Phylogenies: Sankoff/Fitch algorithms, perfect phylogeny and 
compatibility

4. Pattern matching
Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov 
Models (HMMs)

14



Research Statement & Approach
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Biological
question

Analyzing
complexity &
combinatorial

structure

Formulating a
combinatorial

problem

Designing an
algorithm

Interpreting
solutions and
validating the

algorithm

?

Problem != Algorithm

Lab focus:
Application of combinatorial 
optimization techniques to 

answers questions and solve 
problems in biology.



Tumorigenesis: Cell Mutation
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Founder 
tumor cell
with somatic mutation: 
(e.g. BRAF V600E)



Tumorigenesis: Cell Mutation
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Clonal expansion



Tumorigenesis: Cell Mutation & 
Division
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Intra-Tumor 
Heterogeneity

Clonal Evolution Theory of Cancer 
[Nowell, 1976]
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Phylogenetic Tree 
T

Intra-Tumor 
Heterogeneity

Tumorigenesis: Cell Mutation & 
Division

Question:  Why are tumor phylogenies important?

Clonal Evolution Theory of Cancer 
[Nowell, 1976]
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

Phylogenies are Key to 
Understanding Cancer
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

Phylogenies are Key to 
Understanding Cancer

These downstream analyses critically rely on accurate tumor 
phylogeny inference



Key challenge in phylogenetics:
Accurate phylogeny inference from data at present time
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

Phylogenies are Key to 
Understanding Cancer

These downstream analyses critically rely on accurate tumor 
phylogeny inference
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Additional Challenge in Cancer 
Phylogenetics

tumor

normal

normal

tumor

human reference genome (3*10^9 bp)
aligned read (100 bp)
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Additional Challenge in Cancer 
Phylogenetics

tumor

normal

normal

tumor

human reference genome (3*10^9 bp)
aligned read (100 bp)
single nucleotide variant (SNV)



Additional challenge in cancer phylogenetics:
Phylogeny inference from mixed bulk samples at present time
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Additional Challenge in Cancer 
Phylogenetics

tumor

normal

normal

tumor

human reference genome (3*10^9 bp)
aligned read (100 bp)
single nucleotide variant (SNV)
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Tumor Phylogeny 
Inference

Tumor Migration 
Analysis

P

M1

M2

Cell division and mutation Cell migration

Thesis:  Precise mathematical models are needed to describe the 
evolutionary process in cancer

[El-Kebir*, Oesper* et al., ISMB 2015/Bioinformatics]
[El-Kebir et al., RECOMB 2016]; [El-Kebir*, Satas* et al., Cell Systems 2016]
[El-Kebir et al., WABI 2016]; [Zaccaria*, El-Kebir* et al., RECOMB 2017]
[El-Kebir, Bioinformatics/ECCB 2018], [Pradhan and El-Kebir, RECOMB-CG 2018]

[El-Kebir et al., Nature Genetics 2018]
[El-Kebir, WABI 2018]

Overview of Current Research
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Non-uniqueness of Solutions in 
Bulk DNA 

Question 1:  Can we determine the 
number of solutions?

Question 2:  Can we sample solutions 
uniformly at random?

Question 3:  Can we design follow-up 
experiments to reduce ambiguity?

Question 4:  Inclusion of prior 
knowledge/additional data?



Quantifying Extent of Non-
uniqueness
Question 1:  Can we determine 

the number of solutions?
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#PPM:  Given F, count the number of pairs (U, B) composed of mixture 
matrix U and perfect phylogeny matrix B such that F = U B

Question 2:  Can sample solutions 
uniformly at random?

#P is the complexity class of 
counting problems whose 
decision problems are in NP

Every problem in #P can be reduced 
in polynomial time to any problem in 
#P-complete, preserving cardinalities

Theorem:  #PPM is #P-complete

Theorem:  There is no 
FPRAS for #PPM

Theorem:  There is no 
FPAUS for PPM Yuanyuan Qi



Nuraini
Aguse

Problem Statement:
Develop a computational method to suggest follow-up 
sequencing experiments given preliminary sequencing 
data with the aim of reducing ambiguity.

Sequencing Study Design
Question 3:  Can we design follow-up experiments 

to reduce ambiguity?  [Funded by CCBGM]

Effect of single-cell 
sequencing

Effect of n and m

Leah 
Weber



Visualizing Tumor Structure
Jiaqi Wu



Coronaviruses – Background
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Adapted from Cong et al. Viruses (2017) SARS-CoV-2

Orthocoronavirinae



Coronaviruses – Background

Ribosome
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Coronaviruses – Background
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Coronaviruses – Background
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transcription regulatory sequences

Sola et al., Annual Review of Virology, (2015)
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TRS-L !!, TRS-Bs !",… , !# and associated genes 
$!, …, $#

Unannotated genome %

TRS-GENE-ID
CORSID

Coronaviruses – Two Questions
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Question 1. Can we identify TRS-L and TRS-Bs in annotated genomes?

Question 2. Can we identify TRS-L, TRS-Bs and their corresponding genes in 
unannotated genomes?

Annotated genome !with genes "!,… , ""

TRS-ID
CORSID-A

TRS-L %! and TRS-Bs %#, …, %"



Bioinformatics & Computational Biology Group

https://cs.illinois.edu/research/bioinformatics-and-computational-biology

Top: Mohammed El-Kebir, Jian Peng,
Tandy Warnow

Bottom: ChangXiang Zhai, Jiawei 
Han, and  Olgica Milenkovic

And others!



Algorithmic Network Medicine

DNA data Gene NetworkPredictive Modeling

Precision Treatment

§ Understanding human diseases from gene network and DNA
§ Patient stratification for personalized medicine
§ Acceleration of drug design 

http://jianpeng.web.engr.illinois.edu



Large-scale statistical phylogeny estimation
Ultra-large multiple-sequence alignment
Estimating species trees from incongruent gene trees
Supertree estimation
Genome rearrangement phylogeny
Reticulate evolution

Visualization of large trees and alignments
Data mining techniques to explore multiple optima

Tandy Warnow
The Tree of Life: Multiple Challenges

Large datasets:
100,000+ sequences
10,000+ genes

“BigData” complexity

http://tandy.cs.illinois.edu


