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COMPUTER SCIENCET

What is Computational
Biology/Bioinformatics?

Computational biology and bioinformatics is an
interdisciplinary field that develops and

applies computational methods to analyze large
collections of biological data, such as genetic sequences,
cell populations or protein samples, to make new
predictions or discover new biology.

https://www.nature.com/subjects/computational-biology-and-bioinformatics




Technology and Bioinformatics are
Transforming Biology

Until late 20™ Century

Hypothesis Generation
and Validation

Algorithms Hypothesis Generation
and Validation

High throughput technologies
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Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts
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Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a
complete (human) genome from end to end!

... CATTCAGTAG ...

% I A ————— —= ... AGCCATTAG ...
A \ |
| ]

.. TATAATTAG ... ... CETACETAG—
Genome . .
Millions -billions Next-generation 10-100’s million noisy reads
. i R : 30-1000 nucleotides
nucleotides DNA sequencing eads: 30-100

Making sense of this data absolutely requires the use and
development of algorithms!
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Why Study Computational Biology?

Interdisciplinary
Biology
Computer Science
Mathematics
Statistics
= FUNI

Why choose just 12

Best Jobs
1. Actuary
2. Audiologist

3. Mathematician

. Statistician

. Biomedical Engineer

. Dental Hygienist

4
5
6. Data Scientist
7
8

. Software Engineer

Q. Occupational Therapist

10. Computer Systems
Analyst

Worst Jobs
200. Newspaper reporter
199. Lumberjack

198. Enlisted Military
Personnel

197. Cook

196. Broadcaster

195. Photojournalist
194. Corrections Officer
193. Taxi Driver

192. Firefighter

191. Mail Carrier

http: / /www.careercast.com/jobs-rated /jobs-rated-report-2015-ranking-top-200-jobs
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Donald Knuth

Professor emeritus of Computer Science at Stanford University
Turing Award winner

“father of the analysis of algorithms.”

“I can’t be as confident about computer science as | can
about biology. Biology easily has 500 years of exciting
problems to work on. Its at that level.”



| - v
Coursework for Bioinformatics Research
The usual computer science stuff, but especially

* CS 125 (programming)
* CS 173 (abstract thinking)
* CS 225 (data structures)

* CS 374 (algorithms and models for computation)

A bit of statistics is helpful (e.g., CS 361)

CS 466: Introduction to Bioinformatics! Good if you

know some biology, but you can take CS 466, and
learn it there!
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Course Topic #1: Sequence Alignment

Question: How do we compare two genes/genomes?

vs.
Human Genome: Mouse Genome:
«.ACTCGACTGAGAGGATTTCGAGCATGA... ..ACTCAACTGAGATTCGAGCTTCAATGA...
=3.2 x 10? bp =2.8 x 107 bp



Course Topic #2: Genome Assembly

—— r ... CATTCAGTAG ...
’ . ... AGCCATTAG ...
w ‘ l ; ,._-L : - GGTAGTTAG ... .. GGTAAACTAG

.. TATAATTAG ... .. CETAE

CT AL
TACCTACT ...

Question: How do we put all the pieces back together?

ATGTTCCGATTA 'T“\".fA"Tl"M‘.Tn\AA»‘-GG-\SGAAATAT!A'I o
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Course Topic #3: Phylogenetics

Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
(]
. Question: Can we
Filamentous si
Spirochetes bacteria Entamoebae ;‘;?:S Animals

Gram Methanosarcina

S| methanobacterium

reconstruct the evolutionary

. Halophiles
Proteobacteria P

Methanococcyus

: L[] L[]
Cradbosndi history of different
Planctomyces Thermoproteus Flagellates
Pyrodicticum . 2
Bca;rr:‘;ho;d;; Trichomonads SpeCIeS .

Microspornidia
Thermotoga

. Diplomonads
Aquifex

Poly-clonal tumor at sampling Classical phylogenetic tree Clonal evolution tree
https:/ /en.wikipedia.org/wiki/Phylogenetic_tree ; I

20
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Question: Can we recover A .. s " 5 4
how a tumor has evolved ‘A . M P
overtime? A A , HE AA . H A .

ABD  ABC ABC ABD

https://scientificbsides.wordpress.com/201 4/06/09/inferring-tumour-evoluﬁon-2-comparison-to-clcssicaI-phylogerfFﬂ":s/



Course Topic #4: Pattern Matching

Suffix Trees

Question: How do we start to make
sense of all these sequences?

Motif Finding 5 T
A
& <

Burrows Wheeler Trcnsform
aa ac
W © sacasce sacasca  sacaicy
aaaaaa a s—P $*a s
cg$—~acg$aca—>gcSa - ] 5
caacgs = a» a
cgS$acaa e .
g$acaac _>g 9 9
aaaaa g

c a
c
http://www.genomebiology.com/2009/10/3/R25 /figure /F12highres

CAP Binding Sites

ighres=y



Course Topics

1. Sequence alignment
1 e,
How do we compare two genes/genomes?

2. Genome assembly
‘How do we put all the pieces back together?’

3. Phylogenetics
‘What is the evolutionary history of different sequences?’

4. Pattern matching
‘How do we start to make sense out of all these sequences?’

13



Course Topics

1.

Sequence alignment
Dynamic programming: edit distance

Genome assembly
Graphs: de Bruijn graph, Eulerian and Hamiltonian paths

Phylogenetics

Trees and distances: distance matrices, neighbor joining, hierarchical
clustering.

Phylogenies: Sankoff /Fitch algorithms, perfect phylogeny and

compatibility

Pattern matching
Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov

Models (HMMs)

14
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Formulating a

combinatorial
problem
Interpreting ? Analyzing
solutions and . . complexity &
validating the B:i)el;)ﬁl:zl combinatorial
algorithm q structure
Lab focus:
Application of combinatorial
optimization techniques to Designing an
answers questions and solve algorithm

problems in biology.

Problem |= Algorithm

15



Clonal Evolution Theory of Cancer
[Nowell, 1976]

&

Founder

tumor cell

with somatic mutation: O
(e.g. BRAF V60O0E)

16



Clonal Evolution Theory of Cancer
[Nowell, 1976]

&

Clonal expansion

17



Clonal Evolution Theory of Cancer
[Nowell, 1976]

oe.é‘

Intra-Tumor
Heterogeneity

18



Division

Clonal Evolution Theory of Cancer
[Nowell, 1976]

\
—_— —_— \ N
\ \
! 1 \
1 \ AY
1 1 AY
1 \ \
I \ \
1 \ s,
1 \ *
1 \ \
1 \ \
1 \ \
6 i‘ i\

Intra-Tumor Phylogenetic Tree
Heterogeneity T

Question: Why are tumor phylogenies important?

19
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Understanding Cancer
meniify targets for ireaimeh ﬁndersiand metastatic developmeh ﬁecognize common patterns h

tumor evolution across patients

|~ 1 i & O o
3

N H \ *1!7' \.

a A22 -1 A22 -2 A22 -3

Mib N2

Liver 4L

wis. of12 muts
m




ﬁndersiand metastatic developmeh ﬁecognize common patterns h

tumor evolution across patients

a A22 -1 A22 -2 A22 -3

- . 3 &
S \
3 A 3
D D
k . . I | /

These downstream analyses critically rely on accurate tumor

phylogeny inference




,.t:oMPUT,\E]RﬁF‘\E,NE.\
Understandmg Cancer

meniify targets for ireaimem ﬁndersiand metastatic developmeh ﬁecognize common patterns h

tumor evolution across patients

UNIVERSITY ¢ FILL

a A22 -1 A22 -2 A22 -3

TH2 TH3 TH4 TH5 THe
R“ ! e Bl
\ b \ 1%
"
7
11RsN1 4RN2 - oman LALNS N2 R W 2R
ve N\ formus  11Rs amis g 1 mut 7, |48 mu
15 mut 7 mus " famus O™
s 1 ma
omus\ [17 1 3

d 4 \\ 2c %
/ A A \
D "
D N
k . . I’ | /

These downstream analyses critically rely on accurate tumor
phylogeny inference

Key challenge in phylogenetics:
Accurate phylogeny inference from data at present time




human reference genome (3*10”9 bp)
aligned read (100 bp)

normal

23
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human reference genome (3*10”9 bp)
aligned read (100 bp)
single nucleotide variant (SNV)

normal

24



aligned read (100 bp)
single nucleotide variant (SNV)

normal

human reference genome (3*10”9 bp)

Additional challenge in cancer phylogenetics:
Phylogeny inference from mixed bulk samples at present time

25




i

/ Cell migration \

P

M,

Tumor Phylogeny Tumor Migration

k Inference / k Analysis /

[El-Kebir*, Oesper* et al., ISMB 2015 /Bioinformatics] [El-Kebir et al., Nature Genetics 2018]
[El-Kebir et al., RECOMB 201 6]; [El-Kebir*, Satas* et al., Cell Systems 2016] [El-Kebir, WABI 2018]

[El-Kebir et al., WABI 2016]; [Zaccaria*, El-Kebir* et al., RECOMB 2017]

[El-Kebir, Bioinformatics/ECCB 2018], [Pradhan and El-Kebir, RECOMB-CG 2018]

Thesis:

Precise mathematical models are needed to describe the
evolutionary process in cancer

26
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[c3accicr
[ _ACG\GIGG
[c3accicr |
[_ccactcea ]
[G3necc
| ...GTAAGACGTG'5ACG/ GTGGACGA... | © oo oo
____________ o © o © o o @@000}?8888
Si R $ (08 06 05 00 01y _ (02 01 04 00 0.1\ 1 o (la&
O@ @@:5@ = 07 06 00 05 00) 7 01 01 00 05 00) |} | 5 (g
806 6 F AR
\\\\\\\\\\\ Bl Tl
®®O ®®® ©co0oe@e@e
| 100 0
@ ,"/ ®® /i (@) @) (@} (©) (@) © © &® & © 1 1 0 0 88
@ ®-"O O / s (0.8 0.6 05 0.0 0.1)_(0.1 0.1 05 0.0 0.1) 1110 0@ -
| ' S2 -
.\ @O I 0.7 0.6 0.0 0.5 0.0 01 0.1 00 05 00)17 | ¢ | (|®
N Frequency Matrix F Mixture Matrix U 1 0 0 0 1/6€
Question 1: Can we determine the Question 2: Can we sample solutions
number of solutions? uniformly at random?
Question 3: Can we design follow-up Question 4: Inclusion of prior
experiments to reduce ambiguity? knowledge /additional data?

27



Question 1: Can we determine
the number of solutions?

Question 2: Can sample solutions
uniformly at random?

#PPM: Given F, count the number of pairs (U, B) composed of mixture
matrix U and perfect phylogeny matrix B such that F = U B

#P is the complexity class of
counting problems whose
decision problems are in NP

Every problem in #P can be reduced
in polynomial time to any problem in
#HP-complete, preserving cardinalities

Theorem: #PPM is #P-complete

Theorem: There is no
FPRAS for #PPM

Theorem: There is no R
FPAUS for PPM YUG”YUaan

28




HAMPAIGN

_ 'eAMPUTER SCIENC

\ RBANAA
S e mN — - L Ty OF ILLINOIS AT URBA

Question 3: Can we design follow-up experiments
to reduce ambiguity? [Funded by CCBGM]

Leah Nuraini
Weber Aguse

Problem Statement:

Develop a computational method to suggest follow-up
sequencing experiments given preliminary sequencing
data with the aim of reducing ambiguity.

1010

samples (m)
" 1° 1 i
o Bl 2 2
l;' 10 s =
b = 10 _ B 2
o 10t T )
@ o
0 el
£ w0 ! T B g
: e 8y B B o “
3 5 7 9 11 13 1 2 5 10
number . of mutations number m of samples

Effect of n and m Effect of single-cell
sequencing
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Coronaviruses - Background

Order Nidovirales

Family Arteriviridae Coronaviridae Mesoniviridae Roniviridae
Sub-family Orthocoronavirinae Torovirinae

Genera Arterivirus Alpha-  Beta- Gamma- Delta- Bafinivirus Torovirus Alphamesonivirus Okavirus

CoV CoV CoV CoV

T ]

PRRSV EAV TGEV PEDV FCoV IBV WBV BToV PToV HToV DKNV YHV

SARS-CoV MHV MERS-CoV

Lineage

Adapted from Cong et al. Viruses (2017)

31
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Coronaviruses - Background

SARS-CoV-2 Genome (29.9 kbp)

Leader

, ORFla 3
5 -1 frame shift ORF1b 3a M

Ribosome
la

lab

32
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Coronaviruses - Background

SARS-CoV-2 Genome (29.9 kbp) | Transcription Regulatory Sequence (TRS)
Leader
) ORFla N
3 5" UTR -1 frame shift ORF1b 30 M

TRS-1L TCTAAACCGCAACTTT
TRS-B (S) -CTAAACGAAC---

CEmsE L 45 @

]
51
d

[Pl
GATTTCTTG

EmSE L 45 3
CTAAACGAA
C
3 5
ATTTGCTT

g ¥ msB. s 2

.E Nascent stran .2

w Template w

8 CTAAACGAA Switch 8 CTAAACGAA
s - P

Template strand

sTlsT— 3

33
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Coronaviruses - Background

SARS-CoV-2 Genome (29.9 kbp)

Leqder

| Transcription Regulatory Sequence (TRS)

iglon ORFla ’
5"UTR -1 frame shift ORF1b 3a M 3
L TCTAAACGAACTTT
S —-CTAAACGAAC---
3a —--TAAACCAACTT-
E —-—-—--TACGAACTT-
M TCTAAACGAACT--
6 —-—-—--CACGCAAC--- o
7a --TAAACGAAC--- =
7b  —-TAAAAGAACCTT o B
8 -CTAAACGAAC--- Subgenomic messenger
N TCTAAACGAAC--- RNAs (sgmRNAs)

TRS-L and TRS-Bs

Discontinuous transcription due to template switching of RARP at
transcription regulatory sequences
Sola et al., Annual Review of Virology, (2015)

34
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Coronaviruses - Two Questions

Question 1. Can we identify TRS-L and TRS-Bs in annotated genomes?

1 ] ET TRS-ID
I bR CORSID-A

Annotated genome v withgenes Xy, ..., X, TRS-Lag and TRS-Bsay, ..., a,

Question 2. Can we identify TRS-L, TRS-Bs and their corresponding genes in
unannotated genomes?

ll  TRS-GENE-ID 1"
CORSID T
TRS-Lag, TRS-Bs ay, ..., a,, and associated genes

XO, reny Xn

Unannotated genome v

35



Bioinformatics & Computational Biology Group

Top: Mohammed El-Kebir, Jian Peng,
Tandy Warnow

Bottom: ChangXiang Zhai, Jiawei
Han, and Olgica Milenkovic

And others!

https://cs.illinois.edu/research/bioinformatics-and-computational-biology



Algorithmic Network Medicine

» Understanding human diseases from gene network and DNA
= Patient stratification for personalized medicine
= Acceleration of drug design

DNA data Predictive Modeling Gene Network
Genotype ]
I
& ﬁfi Eﬁ‘m@éﬁ% Disease causes .
H ‘O/ .
7 — - | <
v v
Phenotype |

v

Precision Treatment
3ol aie M
fed g 4

http://jianpeng.web.engr.illinois.edu === = = l[ CS@"-UNO|S



Tandy Warnow
The Tree of Life: Multiple Challenges

Large datasets:
100,000+ sequences

10,000+ genes
“BigData” complexity

Computatlongl Large-scale statistical phylogeny estimation
Phylogenetics Ultra-large multiple-sequence alignment
R Catimato Estimating species trees from incongruent gene trees

Supertree estimation
Genome rearrangement phylogeny
Reticulate evolution

Visualization of large trees and alignments

Data mining techniques to explore multiple optima

http://tandy.cs.illinois.edu



