Problem, 3.7

$$
\begin{aligned}
& \int_{0}^{H} W Q d x=\int_{X_{r}}^{X_{s}}\left(N_{s} Q\right)^{(e)} d x+\int_{X_{s}}^{X_{t}}\left(N_{s} Q\right)^{(l+1)} d x \\
& N_{s}^{(e)}=\frac{x-X_{r}}{L}, e_{q}(3,14), \quad Q^{(e)}=\left(\frac{X_{s}-x}{L}\right) Q_{r}+\left(\frac{x-X_{r}}{L}\right) Q_{s} \quad \text { gl }(3,13) \\
& \left.\int_{x_{r}}^{x_{s}}\left(\frac{x-X_{r}}{L}\right)\left[\frac{X_{s}-x}{L}\right) Q_{r}+\left(\frac{x-x_{r}}{L}\right) Q_{s}\right] d x \\
& =\frac{Q_{r}}{L^{2}} \int_{x_{r}}^{x_{s}}\left(x x_{s}-x_{r} x_{s}+x x_{r}-x^{2}\right) d x+\frac{Q_{s}^{2}}{R^{2}} \int_{x_{r}}^{x_{s}}\left(x^{2}-2 x x_{r}+x_{r}^{2}\right) d x \\
& =\frac{Q_{r}}{L^{2}}\left(\frac{x^{2} x_{s}}{2}-X_{r} X_{s} x+\frac{x^{2} x_{r}}{2}-\left.\frac{x^{3}}{3}\right|_{x_{r}} ^{x_{s}}+\frac{Q_{s}}{L^{2}}\left(\frac{x^{3}}{3}-\frac{2 x^{2} x_{r}}{2}+\left.x_{r}^{2} x\right|_{x_{r}} ^{x_{s}}\right.\right. \\
& =\frac{Q_{r}}{L^{2}}\left(\frac{x_{s}^{3}}{2}-x_{r} x_{s}^{2}+\frac{x_{s}^{2} x_{r}}{2}-\frac{x_{s}^{3}}{3}-\frac{x_{r}^{2} x_{s}}{2}+x_{r}^{2} x_{s}-\frac{x_{r}^{3}}{2}+\frac{x_{r}^{3}}{3}\right) \\
& +\frac{Q_{s}}{L^{2}}\left(\frac{x_{s}^{3}}{3}-\frac{8 x_{s}^{2} x_{r}}{2}+x_{r}^{2} x_{s}-\frac{X_{r}^{3}}{3}+x_{r}^{3} * x_{r}^{3}\right) \\
& =\frac{Q_{r}}{L^{2}}\left(\frac{x_{s}^{3}}{6}-\frac{x_{s}^{2} x_{r}}{2}+\frac{x_{r}^{2} x_{s}}{2}-\frac{x_{r}^{3}}{6}\right)+\frac{Q_{s}}{L^{2}}\left(\frac{x_{s}^{3}}{3}-x_{s}^{2} x_{r}+x_{r}^{2} x_{s}-\frac{x_{r}^{3}}{3}\right) \\
& =\frac{Q_{r}}{6 L^{2}}\left(x_{s}^{3}-3 x_{s}^{2} x_{r}+3 x_{r}^{2} x_{s}-x_{r}^{3}\right)+\frac{Q_{s}}{3 L^{2}}\left(x_{s}^{3}-3 x_{s}^{2} x_{r}+3 x_{r}^{2} x_{s}-x_{r}^{3}\right) \\
& =\frac{Q_{r}}{6 L^{2}}\left(x_{s}-x_{r}\right)^{3}+\frac{1}{3 L^{2}}\left(x_{s}-X_{r}\right)^{3}=\frac{Q_{r} L}{6}+\frac{Q_{s} L}{3}
\end{aligned}
$$

Problem 3.7 (cont)

$$
\begin{aligned}
& \int_{X_{s}}^{X_{t}}\left(N_{s} Q\right)^{(e+1)} d x, \quad N_{s}^{(e+1)}=\frac{x_{t}-x}{L}, Q^{(t+1)}=\left(\frac{x_{t}-x}{L}\right) Q_{s}+\left(\frac{x-x_{s}}{L}\right) Q_{t} \\
& \int_{X_{s}}^{x_{t}} N_{s} Q d x=\int_{x_{s}}^{(3,20)}\left(\frac{x_{t}-x}{L}\right)\left[\left(\frac{x_{t}-x}{L}\right) Q_{s}+\left(\frac{x-x_{s}}{L}\right) Q_{t}\right] d x \\
& = \\
& =\frac{Q_{s}}{L^{2}} \int_{x_{s}}^{x_{t}}\left(\frac{x_{t}-x}{L}\right)^{2} d x+\frac{Q_{t}}{L^{2}} \int_{x_{s}}^{x_{t}}\left(\frac{x_{t}-x}{L}\right)\left(\frac{x-x_{s}}{L}\right) d x \\
& \quad=\frac{Q_{s} L^{3}}{3 L^{2}}+\frac{Q_{t} L^{3}}{6 L^{2}}=\frac{Q_{s} L}{3}+\frac{Q_{t} L}{6}
\end{aligned}
$$

using the same quantity for L^{3} that occurred in the previous part.

$$
\int W Q d x=\frac{Q_{r} L^{(e)}}{6}+Q_{s}\left(\frac{L^{(e)}}{3}+\frac{L^{(e+1)}}{3}\right)+\frac{Q_{t} L^{(e+1)}}{6}
$$

when $L^{(e)}=L^{(e+1)}$

$$
\int W Q d x=\frac{L}{6}\left(Q_{r}+4 Q_{s}+Q_{t}\right)
$$

