Homework #4

- **1.** (10 points) A sample of size 100 which has the sample mean $\bar{X} = 500$ was drawn from a population with an unknown mean μ and the standard deviation $\sigma = 80$.
 - a) What is the probability that the population mean will be in the interval (480, 510)?
 - b) Give the 95% confidence interval for the population mean.
- **2.** (10 points) Find the maximum likelihood estimator for λ in a sample of size n drawn the Poisson distribution

$$f(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

3. (10 points) (10 points) The elasticity of a polymer is affected by the concentration of a reactant. When low concentration is used, the true mean elasticity is 55, and when high concentration is used the mean elasticity is 60. The standard deviation of elasticity is 4 in the first case and 5 in the second case. Random samples of sizes 16

and 9 correspondingly are taken, find the probability that $\overline{X}_{\it high} - \overline{X}_{\it low} \geq 4$.

4. (20 points) To estimate the copy number of a specific protein, a laboratory has done multiple measurements:2310, 2320, 2010, 10800, 2190, 3360, 5640, 2540, 3360, 11800, 2010, 3430, 10600, 7370, 2160, 3200, 2020, 2850, 3500, 10200, 8550, 9500, 2260, 7730, 2250

	a)	Find a point estimate of the mean protein copy number.
	b)	Find a point estimate of the standard deviation of the protein copy number
	c)	What is approximately the standard error of the estimate of the mean protein copy number obtained in part a)
	d)	Find a point estimate for the proportion of readings that are less than 5000.
	e)	Find 95% confidence intervals for the point estimate in part d)
	f)	Use the computer to plot the histogram and the box-and-whisker diagram for the sample
5.	(10 points) The college bookstore tells prospective students that the average cost of its textbooks is \$52 with a standard deviation of \$4.50. A group of statistics students think that the average cost is actually higher. In order to test bookstore's claim against this alternative hypothesis, the students bought a random sample of 100 books. The mean price of this sample was \$52.80. Perform the hypothesis test at the 5% level of significance and state your decision.	