
BIOE 310:
Computational  Tools for 

Biological Data

What this class is all about?



Instructor
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 Name: Sergei Maslov

 Professor of Bioengineering,
Physics, Carl R. Woese 

Institute for Genomic Biology, and 
National Center for Supercomputing 
Applications

 Office: 3103 Carl Woese Institute 
for Genomic Biology 
and sometimes 3146C Everitt 
Laboratory (both by appointment)

 E-mail: maslov@illinois.edu

 Phone: 217-265-5705



Teaching Assistant:

Seokjin Yeo
sy44@illinois.edu



Questions and Suggestions:
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maslov@Illinois.edu
sy44@illinois.edu

Start subject with [BIOE310]



 Homework assignments.
Due at the beginning of the class on the designated day

 Midterm exam. March either before or after the spring break

 Final exam. Date will be decided by the College of Engineering

Homework 
Midterm
Final

30%
30%
40%

Homework and Exams

 Grading:



Course Website
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https://courses.engr.illinois.edu/bioe310

Grades will be on 
https://my.bioen.illinois.edu/gradebook



Bring your iClickers to my lectures
• Who knows what is an iClicker?

• Show of hands: who has an iClicker?

• I would like you all to have an iClicker and bring it to every class.  
On amazon.com a new iClicker (1st generation is OK) costs around 
$40. It is also sold at UIUC Bookstore. The used ones are cheaper.

• An alternative solution is using a mobile app: 
https://www.iclicker.com/students/apps-and-remotes/apps

• Your answers WILL NOT be 
used for grading. 
I need them to see if I lost some 
of you and what could 
I rephrase to better explain 
the material



We will use Matlab in class
• Bring your laptops to class 
• Poll: who has Matlab?
• Need to have Matlab installed and know the 

basic user interface (inline commands, plotting)
• We will use Statistics and Machine Learning 

Toolbox and Bioinformatics Toolboxes
• You can use CITRIX for UIUC students and connect to 

EWS Windows Lab Software

• .m files and .mat with Matlab commands and 
data will be on the website after the lecture
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Who has Matlab?

A. Have on my own laptop
B. Plan to use CITRIX
C. I don’t have Matlab
D. I don’t know yet
E. I will never use Matlab

Get your i-clickers



We will use Matlab in class

• Bring your laptops to class 
• Need to have Matlab installed and know the 

basic user interface (inline commands, plotting)
• We will use Statistics and Machine Learning 

Toolbox and Bioinformatics Toolboxes
• Good news! Now all faculty and graduate students get 

Matlab for free. See offering on the WebStore site 
and follow the detailed instructions.

• .m files and .mat with Matlab commands and 
data will be on the website after the lecture



Possible alternative to purchasing Matlab and toolboxes is to use campus resources.

Both Engineering Workstations (EWS) and ACES computers have Matlab. 
I don't think all of them offer the statistics and bioinformatics toolboxes 
(EWS should, ACES computers may not..).

See the following to access:
Citrix for EWS, Matlab, and ACES computers -- links for all
https://it.engineering.illinois.edu/ews/lab-information/remote-connections/connecting-citrix
https://it.engineering.illinois.edu/services/instructional-services/remote-connections-citrix 

Accessing Engineering Workstations (EWS)
https://it.engineering.illinois.edu/ews 

Accessing ACES Academic Computing Workstations
http://acf.aces.illinois.edu/remote/ 
http://acf.aces.illinois.edu/remote/pc.html 

To access off campus use:
CISCO Virtual Private Network -- For off-campus access to campus computer and network resources
(software programs, files saved on the network, etc.)
https://techservices.illinois.edu/services/virtual-private-networking-vpn/download-and-set-up-the-vpn-
client 

CISCO VPN CLIENT
https://webstore.illinois.edu/shop/product.aspx?zpid=2600 

CISCO AnyConnect VPN
https://webstore.illinois.edu/shop/product.aspx?zpid=1222 



What will you learn in this course?
• Basics of probability and statistics

– Basic concepts of probability, Bayes theorem
– Discrete and continuous probability distributions
– Multivariate statistics
– Sampling distributions
– Parameter estimation
– Hypothesis testing
– Regression

• How it is applied to biological data
– Basics of genomics
– Systems biology (gene expression, networks)



Applied Statistics and Probability 
for Engineers, 5th Edition
D. C. Montgomery and G. C. Runger
John Wiley & Sons, Inc. (2011)

You can also use other editions from 
4th (2007) to 6th (2014)
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5th edition is available for free 
at our library

The main Probability/Statistics  Textbook



Student Solutions Manual Applied 
Statistics and Probability for 
Engineers, 5th Edition
D. C. Montgomery and G. C. Runger
John Wiley & Sons, Inc. (2010)

You can also use other editions from 
4th (2007) to 6th (2014)
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5th edition is available 
for free at our library

Problems for our main 
Probability/Statistics  Textbook



Statistics for Bioengineering Sciences
with MATLAB and WinBUGS Support

Brani Vidakovic
Department of Biomedical Engineering, Georgia Tech
(2011) Springer, New York
It is constantly updated with the newest version at the link 

below.
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Free as a PDF eBook at 
http://statbook.gatech.edu/statb4.pdf
Matlab exercises and datasets are at 
http://springer.bme.gatech.edu

Probability/Statistics for Bioengineering 
with Matlab exercises



 J Pevsner
Bioinformatics and functional genomics 

Wiley-Blackwell, 
2nd edition [2009] exists in electronic form
3rd edition [2015] has up-to-date 

information on NGS: RECOMMENDED 
(about $60 on amazon)

 2nd edition is available for free
in electronic form in our library

Genomics/Systems Biology Textbook
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 Ewens, WJ and Grant, GR Statistical 
Methods in Bioinformatics: An 
Introduction, 2nd ed, Springer, 2005.

 2nd edition as PDF eBook

1

Another Bioinformatics/Statistics Textbook



Credit: XKCD 
comics 



This course is about biological data 
and probability theory, and statistics

concepts needed for its analysis



What biological data will be discussed?
Will be covered in lectures or Matlab exercises:

• Genomic data: strings of letters ACGT 
• Gene Expression data: messenger RNA copy numbers 

transcribed from genes
• Proteomic data: protein abundances
• Network data: pairs of interacting genes or proteins and 

protein-protein interaction strengths

Will not be covered:
• Imaging data such as e.g. fMRI brain scans, 

Brain connectome data, Ecosystem dynamics data



Why do you need 
probability and statistics

to analyze
modern biological data?



Definition of statistics by Merriam-Webster 

1 : a branch of mathematics dealing with the 
collection, analysis, interpretation, and 
presentation of masses of numerical data
…

Definition of probability theory by 
Encyclopedia Britannica

a branch of mathematics concerned 
with the analysis of random 
phenomena



Why do you need 
probability and statistics 

to analyze
modern biological data?

Reason 1: 
Biology now has Lots of Data



J. Pevsner, Bioinformatics and Functional Genomics, 3rd edition, Wiley-Blackwell (2015)

A, C, G, T = 2 bits = 0.25 bytes



J. Pevsner, Bioinformatics and Functional Genomics, 3rd edition, Wiley-Blackwell (2015)

If data was money: $1 investment in 1985 
would bring you $1 billion in 2015 





Post NGS Moore’s law



Z. Stephens, S. Lee, F. Faghri, R. Campbell, C. Zhai, M. Efron, 
R. Iyer, M. Schatz, S. Sinha, and G. Robinson (2015) PLoS Biol 13: e1002195. 

Who will have bigger data by 2025?

Zetta=1021Exa=1018Peta=1015





https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

• 91.2 Peta base pairs or 30 million human genomes 
in total (38% growth per year)

• 14 x1015 base pairs (14 Peta base pairs) per year
or roughly 4 million new human genomes per year

• https://www.biostars.org/p/9575324/ (source 
of this figure) estimates 38M human genomes per 
year



What makes genomic data so big?
• There are ~9 millions species each with its own 

genome
• Each of us humans (7.5 billions and counting) has 

unique DNA: we want to compare them all to each 
other

• Each cell has just 1 genome (DNA) but multitude of 
transcriptomes (RNA levels) and proteomes (protein 
levels)

• Cancer cells acquire  mutations in their genomes: need 
to track multiple lineages in a tumor vs time to 
understand cancer

• DNA was proposed as a long-term storage medium of 
information



Farfetched? Storage standards 
evolve fast but DNA standard 
remained unchanged for 4 billion years

Note: Nature article started the 
comparison with a hard drive and 
flash memory skipping the floppy disk





• Prof Olgica Milenkovic from Electrical and 
Computer Engineering UIUC is a local expert on 
this topic

• Profs. George Church and Sri Kosuri (Harvard 
Medical School) explains a potential use of DNA as 
storage medium in 2012

• https://www.youtube.com/watch?v=IJAdqAVjQqY



Fast-forward from 2012 to 2017

Shipman SL, Nivala J, Macklis JD, Church GM. 
CRISPR–Cas encoding of a digital movie into the genomes 
of a population of living bacteria. Nature. 2017;547: 345–349. doi:10.1038/nature23017



Why do you need
probability and statistics 

to analyze
modern biological data?

Reason 2: 
Life is random and messy



Show video 
“Cell organelles”

• Made at the Walter and Eliza Hall Institute of 
Medical Research at Victoria, Australia

• Animated by award-winning artist Dr. Drew 
Berry 

• Go to https://www.wehi.edu.au/wehi-tv for 
other videos



Life is messy, random, and noisy

Yet it is beautifully complex
and has many parts 

(see statistics)



Why life is so random?
• Biomolecules are very small

(nano- to micro-meters)  Brownian noise
• # molecules/cell is often small  

Large cell-to-cell variations  
• Genomic data comes from biological evolution

– the Mother of all random processes
• Genomic data involves (random) samples

– We have genomes of some (not all) organisms
– We have tissue samples of some (not all) cancer 

patients



Why life is so complex?

Primer on complex system



Complex systems have many interacting parts
• All parts are different from each other

– 10s thousands (104) types of proteins in an organism
– 100 thousands (105 ) organizations (AS) in the Internet
– 1 billion (109) people on Facebook
– 10 billion (1010) web pages in the WWW
– 100 billion (1011) neurons in a human brain
– NOT 1023 electrons or quarks studied by physics: 

they are all the same and boring!
• Yet they share the same basic design 

– All proteins are strings of the same 20 amino acids
– All WWW pages use HTML, JavaScript, etc.
– All neurons generate and receive electric spikes



Example: a complex system with many parts

38
Justin Pollard, 
http://www.designboom.com



Justin Pollard, 
http://www.designboom.com 39

Parts interact   
they need to be assembled to work



Intra-cellular
Networks 
operate 
on multiple 
levels

Slides by Amitabh Sharma, PhD
Northeastern University & Dana Farber Cancer 
Institute



Sea urchin embryonic development (from endomesoderm up to 30 hours) by Davidson’s lab



Protein-Protein binding 
IntAct Database (Dec 2015) 

Interactions: 577,297   Proteins: 89,716 

Baker’s yeast S. cerevisiae (only nuclear proteins shown)
From S. Maslov, K. Sneppen, Science 2002

Worm C. elegans 
From S. Lee et al , Science 2004



Metabolic pathway chart by ExPASy: 5702 reactions as of December 2015



Brain and nerves of a worm

• Worm (C. elegans) has 302 neurons

• Our brain has 100 billion (1011) neurons





by Neo Martinez and Richard Williams



Credit: XKCD 
comics 



Random experiments

Sample spaces

Venn diagrams of 
random events

Foundations of Probability



Random Experiments
• An experiment is an operation or procedure, 
carried out under controlled conditions
– Example: measure the metabolic flux through a 
reaction catalyzed by the enzyme A

• An experiment that can result in different 
outcomes, even if repeated in the same manner 
every time, is called a random experiment
– Cell‐to‐cell variability due to history/genome variants
– Noise in external parameters such as temperature, 
nutrients, pH, etc.

• Evolution offers ready‐made random experiments 
– Genomes of different species
– Genomes of different individuals within a species
– Individual cancer cells

2



Variability/Noise Produce Output Variation

3

e.g. Temperature, 
Nutrients, pH

Internal state of individual cells,
Signals from neighbors

What I want to 
change in the 
experiment, e.g.
expression level of 
a gene A

What I measure
in the experiment, 
e.g. metabolic flux
catalyzed by the 
enzyme encoded 
by the gene A



Sample Spaces

• Random experiments have unique outcomes.
• The set of all possible outcomes of a random 
experiment is called the sample space, S.

• S is discrete if it consists of a finite or 
countable infinite set of outcomes.

• S is continuous if it contains an interval (either 
a finite or infinite width) of real numbers.

Sec 2‐1.2 Sample Spaces 4



Examples of a Sample Space

• Experiment measuring the abundance of 
mRNA expressed from a single gene
S = {x|x > =0}: continuous.

• Bin it into four groups 
S = {below 10, 10‐30, 30‐100, above 100}: 
discrete.

• Is gene “on”  (mRNA above 30)?
S = {true, false}: logical/Boolean/discrete.

5



Event

• The union of two events is the event that consists of all outcomes 
that are contained in either of the two events. We denote the 
union as 

• The intersection of two events is the event that consists of all 
outcomes that are contained in both of the two events. We denote 
the intersection as 

• The complement of an event in a sample space is the set of 
outcomes in the sample space that are not in the event. We 
denote the complement of the event     as 
(sometimes       or    )

6

An event (E) is a subset of the sample space of a random 
experiment, i.e., one or more outcomes of the sample space.



Examples

Sample space for the expression 
level of a gene: S =  {x|x ≥0}
Two events: 
• E1 = {x|10 < x < 100}
• E2 = {x|30 < x < 300}

Discrete 

Continuous

10  30  100  300 

• E1 ∩ E2 = {x|30 < x < 100 }
• E1 U E2 = {x|10 < x < 300}
• E1’ = {x|x ≤  10 or x ≥ 100}
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Venn diagrams 
A U B

John Venn (1843‐1923)
British logician

John Venn (1990‐ )
Brooklyn hipster

Find 
5 differences 
in beard and
hairstyle
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Venn diagrams 

Which formula describes the blue region?  
A. A U B
B. A ∩ B
C. A’
D. B’

Get your i‐clickers
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Venn diagrams 

Which formula describes the blue region?  
A. (A U B) ∩ C
B. (A ∩ B) ∩ C
C. (A U B) U C
D. (A ∩ B) U C

Get your i‐clickers
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Venn diagrams 

Which formula describes the blue region?  
A. A ∩ C
B. A’ U C’
C. (A ∩ B ∩ C)’
D. (A ∩ B) ∩ C

Get your i‐clickers



Credit: XKCD 
comics 



Definitions of Probability



Two definitions of probability

• (1) STATISTICAL PROBABILITY: the relative 
frequency with which an event occurs in the 
long run

• (2) INDUCTIVE PROBABILITY: the degree of 
belief which it is reasonable to place in a 
proposition on given evidence

Bulmer, M. G.. Principles of Statistics (Dover Books on Mathematics)



Statistical Probability

A statistical probability of an event is the 
limiting value of the relative frequency with 
it occurs in a very large number of 
independent trials

Empirical



Statistical Probability of a Coin Toss

Excess of heads among 2,000 coin tosses (Kerrich 1946)

N(Heads out of T tosses)‐
‐N(Tails out of T tosses)

John Edmund Kerrich
(1903–1985) 

British/South African
mathematician

20001 1000T (tosses)



Statistical Probability of a Coin Toss

Proportion of heads among 10,000 coin tosses (Kerrich 1946)

Probability(Heads)= 
=N(Heads out of T tosses)/T
limit for large T

John Edmund Kerrich
(1903–1985) 

British/South African
mathematician



21

Who is ready to use Matlab?

A. I have Matlab installed on my laptop
B. I am ready to use Matlab on EWS
C. I don’t have it ready but plan to install it
D. I am not ready but plan to use EWS
E. I plan to use other software (Python, R, etc.)

Get your i‐clickers



Matlab is easy to learn 
• Matlab is the lingua franca of all of engineering
• Use online tutorials e.g.: 

https://www.youtube.com/watch?v=82TGgQApFIQ
• Matlab is designed to work with Matrices  symbols * and / are 

understood as matrix multiplication and division
• Use .* and ./ for regular (non‐matrix) multiplication
• Add ; in the end of the line to avoid displaying the output on the 

screen
• Loops: for i=1:100; f(i)=floor(2.*rand); end;
• Conditional statements: if rand>0.5; count=count+1; end; 
• Plotting: plot(x,y,’ko‐’); or semilogx(x,y,’ko‐’); or loglog(x,y,’ko‐’); . 

To keep adding plots onto the same axes use: hold on; 
To create a new axes use figure; 

• Generating matrices: rand(100) – generates square matrix 100x100. 
Confusing!  Use rand(100,1) or zeros(30,20), or randn(1,40) 
(Gaussian);

• If Matlab complains multiplying matrices check sizes using whos
and if needed use transpose operation: x=x’;



A Matlab Cheat-sheet (MIT 18.06, Fall 2007)
Basics:
save 'file.mat'  
load 'file.mat'

save variables to file.mat
load variables from file.mat

diary on record input/output to file diary
diary off stop recording
whos  
clear
help command  
doc command

list all variables currenly defined  
delete/undefine all variables

quick help on a given command
extensive help on a given command

Defining/changing variables:
x = 3 define variable x to be 3
x = [1 2 3] set x to the 13 row-vector (1,2,3)
x = [1 2 3]; same, but don't echo x to output
x = [1;2;3] set x to the 31 column-vector (1,2,3)
A = [1 2 3 4;5 6 7 8;9 10 11 12];

set A to the 3 matrix with rows 1,2,3,4 etc.
x(2) = 7 change x from (1,2,3) to (1,7,3)
A(2,1) = 0 change A2,1 from 5 to 0

Arithmetic and functions of numbers:
3*4, 7+4, 2-6 8/3 multiply, add, subtract, and divide numbers

compute 3 to the 7th power, or 3 to the 8+2i power3^7, 3^(8+2i)
sqrt(-5)
exp(12)

compute the square root of –5  
compute e12

log(3), log10(100)  compute the natural log (ln) and base-10 log (log10)
abs(-5) compute the absolute value |–5|
sin(5*pi/3) compute the sine of 5π/3
besselj(2,6) compute the Bessel function J (6)2

Arithmetic and functions of vectors and matrices:
x * 3 multiply every element of x by 3
x + 2 add 2 to every element of x
x + y element-wise addition of two vectors x and y
A * y product of a matrix A and a vector y
A * B product of two matrices A and B
x * y not allowed if x and y are two column vectors!
x .* y element-wise product of vectors x and y  
A^3 the square matrix A to the 3rd power 
x^3 not allowed if x is not a square matrix!
x.^3 every element of x is taken to the 3rd power
cos(x) the cosine of every element of x  
abs(A) the absolute value of every element ofA  
exp(A) e to the power of every element of A
sqrt(A)
expm(A)  
sqrtm(A)

the square root of every element of A
the matrix exponential eA

the matrix whose square is A

Transposes and dot products:
x.', A.'  
x', A'
x' * y

the transposes of x and A
the complex-conjugate of the transposes of x and A
the dot (inner) product of two column vectors x and y

Constructing a few simple matrices:
rand(12,4) a 12 matrix with uniform random numbers in [0,1)  
randn(12,4) a 12 matrix with Gaussian random (center 0, variance 1)  
zeros(12,4) a 12 matrix of zeros
ones(12,4) a 12 matrix of ones
eye(5) a 5 identity matrix I (“eye”)
eye(12,4) a 12 matrix whose first 4 rows are the 44 identity
linspace(1.2,4.7,100)

row vector of 100 equally-spaced numbers from 1.2 to 4.7
7:15 row vector of 7,8,9,…,14,15
diag(x) matrix whose diagonal is the entries of x (and other elements = 0)

Portions of matrices and vectors:
x(2:12)
x(2:end)
x(1:3:end)
x(:)
A(5,:)
A(5,1:3)
A(:,2)
diag(A)

the 2nd to the 12th elements of x
the 2nd to the last elements of x
every third element of x, from 1st to the last  
all the elements of x
the row vector of every element in the 5th row of A
the row vector of the first 3 elements in the 5th row of A  
the column vector of every element in the 2nd column of A  
column vector of the diagonal elements of A

Solving linear equations:
A \ b  
inv(A)

for A a matrix and b a column vector, the solution x to Ax=b
the inverse matrix A–1

[L,U,P] = lu(A) the LU factorization PA=LU
eig(A) the eigenvalues of A
[V,D] = eig(A)  the columns of V are the eigenvectors of A, and

the diagonals diag(D) are the eigenvalues of A

Plotting:
plot(y)  
plot(x,y)
plot(x,A)
loglog(x,y)  
semilogx(x,y)  
semilogy(x,y)

plot y as the y axis, with 1,2,3,… as the x axis  
plot y versus x (must have same length)
plot columns of A versus x (must have same # rows)  
plot y versus x on a log-log scale

plot y versus x with x on a log scale
plot y versus x with y on a log scale

fplot(@(x) …expression…,[a,b])
plot some expression in x from x=a to x=b

axis equal force the x and y axes of the current plot to be scaled equally
title('A Title') add a title A Title at the top of the plot
xlabel('blah')  
ylabel('blah')  
legend('foo','bar')

label the x axis as blah
label the y axis as blah

label 2 curves in the plot foo and bar
include a grid in the plotgrid  

figure open up a new figure window

dot(x,y), sum(x.*y) …two other ways to write the dot product
x * y' the outer product of two column vectors x and y

http://web.mit.edu/18.06/www/Spring09/matlab‐cheatsheet.pdf



Matlab group exercise
Each table to edit the file coin_toss_template.m
(replace all ?? with commands/variables/operations ) or 
writes a new Matlab (Python, R, or anything else) script to:
• Simulate a fair coin toss experiment
• Generate multiple tosses of a  fair coin: 
1 – heads, 0 ‐ tails

• Calculate the fraction of heads (f_heads(t)) at 
timepoints:
t=10; 100; 1000; 10,000; 100,000; 1,000,000;10,000,000 
coin tosses

• Plot fraction of heads f_heads(t) vs t with a logarithmic 
t‐axis

• Plot abs(f_heads(t)‐0.5) vs t on a log‐log plot 
(both axes are logarithmic)



How I did it
• Stats=1e7;
• r0=rand(Stats,1);  r1=floor(2.*r0); 
• n_heads(1)=r1(1);
• for t=2:Stats; n_heads(t)=n_heads(t‐1)+r1(t); end;
• tp=[1, 10,100,1000, 10000, 100000, 1000000, 
10000000]

• np=n_heads(tp); fp=np./tp
• figure; semilogx(tp,fp,'ko‐');
• hold on; semilogx([1,10000000],[0.5,0.5],'r‐‐');
• figure; loglog(tp,abs(fp‐0.5),'ko‐');
• hold on; loglog(tp,0.5./sqrt(tp),'r‐‐');



Proportion of heads among 1,000,000,000 coin tosses 
(105 more than Kerrich) took me 33 seconds on my Surface Book 



ABS(Proportion of heads‐0.5) 
among 100,000,000 coin tosses

Central Limit Theorem
Known since 1733



Matlab group exercise
Each table to edit the file coin_toss_template.m
(replace all ?? with commands/variables/operations ) or 
writes a new Matlab (Python, R, or anything else) script to:
• Simulate a fair coin toss experiment
• Generate multiple tosses of a  fair coin: 
1 – heads, 0 ‐ tails

• Calculate the fraction of heads (f_heads(t)) at 
timepoints:
t=10; 100; 1000; 10,000; 100,000; 1,000,000;10,000,000 
coin tosses

• Plot fraction of heads f_heads(t) vs t with a logarithmic 
t‐axis

• Plot abs(f_heads(t)‐0.5) vs t on a log‐log plot 
(both axes are logarithmic)



Proportion of heads among 1,000,000,000 coin tosses 
(105 more than Kerrich) took me 33 seconds on my Surface Book 



ABS(Proportion of heads‐0.5) 
among 100,000,000 coin tosses

Central Limit Theorem
Known since 1733



Definitions of Probability



Two definitions of probability

• (1) STATISTICAL PROBABILITY: the relative 
frequency with which an event occurs in the 
long run

• (2) INDUCTIVE PROBABILITY: the degree of 
belief which it is reasonable to place in a 
proposition on given evidence

Bulmer, M. G.. Principles of Statistics (Dover Books on Mathematics)



Inductive Probability

An inductive probability of an event the 
degree of belief which it is rational to place 
in a hypothesis or proposition on given 
evidence.

Logical



Principle of indifference
• Principle of Indifference states that two events 
are equally probable if we have no reason to 
suppose that one of them will happen rather 
than the other.  (Laplace, 1814)

• Unbiased coin: 
probability Heads = 
probability Tails = ½

• Symmetric die: 
probability of each side = 1/6

Pierre-Simon, 
marquis de Laplace
(1749 –1827) 
French mathematician, 
physicist, astronomer



Inductive = Naïve probability
• If space S is finite and all outcomes are equally 
likely, then

Prob(Event E)= # of outcomes in E
# of all outcomes in S

• Can also work with continuous is # is replaced with 
Area or Volume

• Unbiased coin: Prob(Heads) = Prob(Tails) = 1/2
• Symmetric die: probability of each side = 1/6
• Lottery outcomes are not symmetric: It is not a 
50%‐50% chance to win or loose in a lottery



Inductive probability can lead to trouble
• Glass contains  a mixture of wine and water and proportion of 

water to wine can be anywhere between 1:1  and 2:1 
• (i) We can argue that the proportion of water to wine is equally 

likely to lie between 1 and 1.5 as between 1.5 and 2. 
• (ii) Consider now ratio of wine to water. It is between 0.5  and 1. 

Based on the same argument it is equally likely in [1/2, 3/4] as it 
is in [3/4, 1]. But then water to wine ratio is equally likely to lie 
between 1 and 4/3=1.333… as it is to lie between 1.333.. and 2. 
This is clearly inconsistent with the previous calculation…

• Paradox solved by clearly defining the experimental design: 
– For (i) use fixed amount of wine (1 liter) and select a uniformly‐distributed 

random number between 1 and 2 for water.
– For (ii) use 1 liter of water and select uniformly‐distributed a random 

number between 0.5 and 1 for wine. 
– Different experiments – different answers

• Paradox is old. It is attributed to (among others) Joseph Bertrand



Better known Bertrand’s paradox

Joseph Bertrand 
(1822 –1900) 
French mathematician



Solution #1



Solution #2



Solution #3



So, is probability 1/4, 1/2 , or 1/3 ?
• Depends on how a “random” arc is selected:

– For #1: select a point inside big circle and then draw 
an arc with this point as the center. Prob=1/4

– For #2: select a diameter and a point on this 
diameter, then draw an arc. Prob=1/2

– For #3: select a point on the circle and random 
angle. Prob=1/3



Mathematica visualization

BertrandRandomChordParadox.cdf



21

A. 1/2
B. 1/3
C. 2/3
D. 13/27
E. I don’t know

Get your i‐clickers

I have two children. 
One of them is a boy born on Tuesday.
What is the probability I have two boys?



Inductive probability
relies on combinatorics
or the art of counting

combinations



Counting – Multiplication Rule
• Multiplication rule:

– Let an operation consist of k steps and
• n1 ways of completing the step 1,
• n2 ways of completing the step 2, … and
…….
• nk ways of completing the step k.

– Then, the total number of ways of carrying the entire 
operation is:

• n1 * n2*…*nk

25



• S = {A, C, G, T} the set of 4 DNA bases
– Number of k‐mers is 4k=4*4*4…*4 (k –times)
– There are 43=64 triplets in the genetic code
– There are only 20 amino acids (AA)+1 stop codon 
– There is redundancy: same AA coded by 1‐3 codons
– Evidence of natural selection: “silent” changes of 
bases are  more common than AA changing ones 

• A protein‐coding part of the gene is typically 1000 
bases long
– There are 41000= 22000 ~ 10600 possible sequences of 
just one gene

– Or (10600)25,000=1015,000,000 of 25,000 human genes.
– For comparison, the Universe has between 1078 and 
1080 atoms and is 4*1017 seconds old.



Counting – Permutation Rule
• A permutation is a unique sequence of distinct 
items.

• If S = {a, b, c}, then there are 6 permutations
– Namely:  abc, acb, bac, bca, cab, cba (order matters)

• # of permutations for a set of n items is n!
• n! (factorial function) = n*(n‐1)*(n‐2)*…*2*1
• 7! = 7*6*5*4*3*2*1 = 5,040
• By definition:  0! = 1

Sec 2‐1.4 Counting Techniques 27



Multiplication and permutation 
rules are two examples 

of a general 
problem, where 

a sample of size k  is drawn 
from a population of 
n distinct objects



1 ball is red

1 ball is blue

1 ball is green

Balls drawn from an urn (or bowl)

• Do I put each ball back to the bag after 
drawing it?
• Yes: problem with replacement
• No: problem without replacement

• Do I keep track of the order in which balls are 
drawn?
• Yes: the order matters
• No: the order does not matter

n=3 balls of different colors in an urn from which I draw k=2
balls one at a time



George Pólya

• George Pólya (December 13, 1887 
– September 7, 1985) was a 
Hungarian mathematician. He was 
a professor of mathematics from 
1914 to 1940 at ETH Zürich and 
from 1940 to 1953 at Stanford 
University. He made fundamental 
contributions to combinatorics, 
number theory, numerical analysis 
and probability theory. 







Sampling table

Order matters Order does not 
matter

Replacement (n)k Difficult:

=
!

! !

No replacement n(n‐1)(n‐2)..(n‐k+1)=
= !

!

= !
! !

How many ways to choose a sample of k objects out of population of n objects?



Inductive probability
relies on combinatorics
or the art of counting

combinations









Sampling table

Order matters Order does not 
matter

Replacement (n)k Difficult:

=
!

! !

No replacement n(n‐1)(n‐2)..(n‐k+1)=
= !

!

= !
! !

How many ways to choose a sample of k objects out of population of n objects?



Example

• A DNA of 100 bases is characterized by 
its numbers of 4 nucleotides: 
dA, dC, dG, and dT (dA+dC+dG+dT =100)

• I don’t care about the sequence (only about 
the total numbers of A,C,G, and T

• How many distinct combinations of dA, dC, dG, 
and dT are out there?



Probability Axioms,
Conditional Probability, 

Statistical (In)dependence,
Circuit Problems



Axioms of probability

These axioms imply that:



Addition rules following from the 
Axiom (3)



P(A U B U C) = P(A) + P(B) + P(C) ‐

‐ P(A ∩ B) ‐ P(A ∩ C) ‐ P(B ∩ C)+ 

+ P(A ∩ B ∩ C).



Conditional probability





Multiplication rule
is just definition of conditional probability

P(B|A) =P(B∩A)/P(A) 

P(B∩A)=P(B|A)∙P(A)



Drake equation

• N = The number of civilizations in The Milky Way Galaxy whose 
electromagnetic emissions are detectable.

• R* = The rate of formation of stars suitable for the development of 
intelligent life.

• fp = The fraction of those stars with planetary systems.
• ne = The number of planets, per solar system, with an environment 

suitable for life.
• fl = The fraction of suitable planets on which life actually appears.
• fi = The fraction of life bearing planets on which intelligent life 

emerges.
• fc = The fraction of civilizations that develop a technology that 

releases detectable signs of their existence into space.
• L = The length of time such civilizations release them



Statistically independent events
Always true: P(A∩B)=P(A|B)∙P(B)=P(B|A)∙P(A)







Credit: XKCD 
comics 



Series Circuit

Sec 2‐6 Independence 28

This circuit operates only if there is at least one path of functional 
devices from left to right.  The probability that each device 
functions is shown on the graph.  Assume that the devices fail 
independently.  What is the probability that the circuit operates?

Let L & R denote the events that the left and right devices 
operate.  The probability that the circuit operates is:

P(L and R) =P(L∩R) = P(L) * P(R) = 0.8 * 0.9 = 0.72.

L R



Parallel Circuit

Sec 2‐6 Independence 29

This circuit operates only if there is a path of functional devices 
from left to right.  The probability that each device functions is 
shown.  Each device fails independently.

Let T & B denote the events that the top and bottom devices 
operate.  The probability that the circuit operates is:

P(T U B) = 1 ‐ P(T’ ∩ B’) = 1‐ P(T’)*P(B’) = 1 – 0.052 = 1 – 0.0025 – 0.9975.

T

B



Duality between parallel and series circuits



Advanced Circuit

Sec 2‐6 Independence 31

This circuit operates only if there is a path of functional devices 
from left to right.  The probability that each device functions is 
shown.  Each device fails independently.

Partition the graph into 3 columns with L & M denoting the left &  
middle columns.
P(L) = 1‐ 0.13 , and P(M) = 1‐ 0.052, so the probability that the 
circuit operates is: (1 – 0.13)(1‐0.052)(0.99) = 0.9875  (this is a 
series of parallel circuits). 





P(circuit works |e7 is broken)=P(e1 works)*
[1‐(1‐P(e2 works)*P(e3 works))*(1‐P(e4 works)*P(e5 works))]*
P(e6 works)=0.3*(1‐(1‐0.8*0.2)*(1‐0.2*0.5))*0.6=0.0439

The contribution to total probability:
P(circuit works |e7 is broken)*P(e7 is broken)=0.6*0.0439=0.0264



P(circuit works |e7 works)=P(e1 works)*
[1-(1-P(e2 works))*(1-P(e4 works))]
*[1-(1-P(e3 works))*(1-P(e5 works))]*
P(e6 works)=0.3*(1-(1-0.8)*(1-0.2))*(1-(1-0.2)*(1-0.5)))*0.6=0.0907

The contribution to total probability:
P(circuit works |e7 works)*P(e7 works)=0.4*0.0907=0.0363



P(circuit works)=
P(circuit works |e7 works)*P(e7 works)+
P(circuit works |e7 is broken)*P(e7 is broken)=
=0.0264+0.0363=0.0627  

Answer: 6.27%



Circuit  Set equation



Circuit  Set equation

P(Works) = 0.9.*(1‐(1‐0.5.*0.3).*(1‐0.1.*(1‐0.6.*0.5))).*0.8=0.15084



Matlab group exercise
• Test our result for this circuit. 
• Use circuit_template.m on the 
website



Matlab group exercise
• Test our result for this circuit. 
• Download  circuit_template.m from the website

P(Works) = 0.9.*(1‐(1‐0.5.*0.3).*(1‐0.1.*(1‐0.6.*0.5))).*0.8=0.15084



Credit: XKCD 
comics 



Reminder: 
Conditional probability



If you are not yet reading
XKCD comics  
https://xkcd.com/
you should start

What is wrong in 
this comics?



Bayes Theorem 



Bayes’ theorem

Thomas Bayes  (1701‐1761) 
English statistician, philosopher, and Presbyterian minister

Bayes’ theorem was presented in "An Essay towards solving a 
Problem in the Doctrine of Chances" which was read to the 

Royal Society in 1763 already after Bayes' death.



Bayes’ theorem (simple)

• In Science we often want to know: 
“How much faith should I put into hypothesis, given the data?”  
or P(H|D) (see also the inductive definition of probability) 

• What we usually can calculate if the hypothesis/model is OK:
“Assuming that this hypothesis is true, what is the 
probability of the observed data?” or P(D|H)

• Bayes’ theorem can help: P(H|D)=P(D|H)P(H)/P(D)
• The problem is P(H) (so‐called prior) is often not known



Works best with exhaustive and mutually‐exclusive hypotheses:  
H1, H2, … Hn such that H1 U H2 U H3 … U Hn =S and Hi ∩ Hj=ᴓ for i≠j

P(Hk|D)=P(D|Hk)P(Hk)/P(D)
where: 
P(D)= P(D|H1)P(H1) + P(D|H2)P(H2) + … P(D|Hn)P(Hn)

Bayes’ theorem (continued)

H1 H2 H3 H4D H1

D H2
D H3

D H4



Secretary problem

• An employer has a known number – n –  of 
applicants for a secretary position, whom are 
interviewed one at a time

• Employer can easily evaluate and rank applicants 
relative to each other but has no idea of the overall 
distribution of their quality

• Employer has only one chance to choose the 
secretary: gives yes/no answer in the end of each 
interview and cannot go back to rejected applicants

• How can employer maximize the probability 
to choose the best secretary among all applicants?



Eugene Dynkin (1924 – 2014) 
solved this problem in 1963. 
He referred to it as  a “picky bride 
problem”
was a Soviet and later American 
mathematician, member of the
US National Academy of Science.
He has made contributions to the 
fields of probability and algebra. 
The Dynkin diagram, the Dynkin
system, and Dynkin's lemma are 
all named after him.

Martin Gardner (1914 – 2010) 
Described the “secretary problem” 
in Scientific American 1960.
was an American popular 
mathematics and popular 
science writer.  Best known 
for “recreational mathematics”:
He was behind the 
“Mathematical Games” section 
in Scientific American.



Who solved the secretary problem?
• Gardner outlined the solution in Sci Am 1960 but gave 
no formal proof

• Solution by Lindey was published in 1961:
Lindey, D. V. (1961). Dynamic programming and decision theory. 
Appl. Statist. 10 39‐51

• Dynkin’s paper was published in 1963: 
Dynkin, E. B. (1963). The optimum choice of the instant for stopping a 
Markov process. Soviet Math. Dokl. 4 627‐629

• When the celebrated German astronomer, Johannes 
Kepler (1571‐1630), lost his first wife to cholera in 
1611, he set about finding a new wife

• He spent 2 years on the process, had 11 candidates 
and married the 5th candidate (11/e~4 so he married 
the first after)

Thomas S Ferguson,  Statistical Science 1989, Who Solved the Secretary Problem?



What should the employer do?
• Employer does not know the distribution of the 
quality of applicants and has to learn it on the fly

• Algorithm: look at the first r‐1 applicants, 
remember the best among them

• Hire the first among next n‐r+1 applicants who is 
better than the best among the first r applicants

• How to choose r?
• When r is too small – not enough information: 
the best among r is not very good. You are likely 
to hire a bad secretary

• When r is too large (e.g. r=n‐1) – you 
procrastinated for too long! You have almost all 
the information, but you will have to hire the last 
applicant who is (likely) not particularly good





Probability of hiring the best candidate 
if he/she has #i in the queue









dP(x)/dx=‐ln(x)‐1
‐ln(x*)‐1=0

x*=1/e=0.3679

Probability of picking the best 
applicant is also 1/e=0.3679



Credit: XKCD 
comics 



Simpson’s paradox
Edward Hugh Simpson 
(10 December 1922 – 5 February 2019) 
was a British codebreaker, statistician 
and civil servant. 
"The Interpretation of Interaction 
in Contingency Tables“, Journal of the Royal Statistical Society, 1951

Is it possible for one doctor to have a
higher success rate than another doctor in 
every type of treatment he performs but to 
have a lower overall success rate across all 
treatment types? 



Dr. Hibbert Dr. Nick





Dr. Hibbert: success rate =80%
Dr. Nick: success rate =83%
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Simpson’s paradox might explain altruism
• Darwinian evolution has a problem with altruism
• “Selfish genes” do not care 
about others

• J. B. S. Haldane, (1892‐1964)
British geneticist, evolutionary 
biologist

• When asked if he would give his life to save a
drowning brother answered: “No, but I would to 
save two brothers or eight cousins”

• Altruism in some insect colonies like ants is 
because they are all genetically similar.



Altruism in bacteria
• Bacteria live in communities in close proximity to each other
• Individual bugs spend significant resources to produce 

extracellular molecules, excrete them outside of the cell to share 
with others. That slows their growth
– Examples: extracellular enzymes, biofilm components, 

antimicrobial and anti‐immune agents

• Cheaters have faster growth rate 
– They can take over by not producing any shared molecules

• Evolutionary paradox: how bacteria can be altruistic?



Chuang, Rivoire, and Leibler’s answer



• The common good was a membrane‐permeable Rhl autoinducer molecule 
rewired to activate antibiotic (chloramphenicol; Cm) resistance gene 
expression.



Fraction of altruists in 
each of individual 
test tubes dropped 

Yet the overall fraction of 
altruists in 
all test tubes combined 
increased



Credit: XKCD 
comics 



Let’s check the theory by 
playing the dame

Go to 
https://dacalderon.shinyapps.io/montyhall/
• Tables 1,3,5 will play “switch the door” strategy
• Tables 2,4,6 will play “same door” strategy
• Play at least 30 rounds (more is better)
• In the end we will add up the numbers from all 

tables



Let’s check with more random experiments
• Stats=??;
• %set Stats large...
• switch_count=0; noswitch_count=0; %set 0 at the beginning
• for n = 1:Stats
• a = randperm(3); %Monty places two goats and the car at random
• %a(1) -goat, a(2) -goat, a(3) - car
• i= floor(3.*rand)+1; %you select the door!
• % SWITCH STRATEGY
• if(i == a(1)) switch_count=switch_count+??; %a(2)-opened, switch to a(3), car!
• elseif (i == a(2)) switch_count = switch_count + ??;%a(1) opened, switch to a(3), car!
• else switch_count = switch_count + ??; %a(1)/a(2) opened, switch to a(2)/a(1), no car :-(
• end
• % NO SWITCH STRATEGY
• if(i == a(1)) noswitch_count = noswitch_count + ??; %a(2)-opened, no car :-(
• elseif (i==a(2)) noswitch_count = noswitch_count + ?? %a(1)-opened, no car :-(
• else  noswitch_count = noswitch_count + ??; %a(1) or a(2)-opened, car!
• endend;
• disp('probability to win a car if switched doors=');
• disp(num2str(switch_count./??)); %# of cars with switching
• disp('probability to win a car if did not switch doors=');
• disp(num2str(noswitch_count./??)); %# of cars w/o switching



Credit: XKCD 
comics 



Discrete Probability Distributions



Random Variables

• A variable that associates a number with the 
outcome of a random experiment is called a 
random variable.

• Notation: random variable is denoted by an 
uppercase letter, such as X.  After the 
experiment is conducted, the measured value 
is denoted by a lowercase letter, such a x. 
Both X and x are shown in italics, e.g., P(X=x).

Sec 2‐8 Random Variables 26



Continuous & Discrete Random 
Variables

• A discrete random variable is usually integer 
number
– N ‐ the number of p53 proteins in a cell
– D ‐ the number of nucleotides different between two 
sequences

• A continuous random variable is a real number
– C=N/V – the concentration of p53 protein in a cell of 
volume V

– Percentage (D/L)*100% of different nucleotides in 
protein sequences of different lengths L 
(depending on the set of L’s may be discrete but dense)

Sec 2‐8 Random Variables 27



Probability Mass Function (PMF)
• I want to compare all 4‐
mers in a pair of human 
genomes 

• X – random variable: the 
number of nucleotide 
differences in a given 4‐
mer

• Probability Mass Function: 
f(x) or P(X=x) – the 
probability that the # of 
SNPs is exactly equal to x

28

Probability Mass Function for 
the # of mismatches in 4‐mers

P(X =0) = 0.6561
P(X =1) = 0.2916
P(X =2) = 0.0486
P(X =3) = 0.0036
P(X =4) = 0.0001

Σx P(X=x)= 1.0000



Cumulative Distribution Function (CDF)

29

Cumulative Distribution Function CDF: F(x)=P(X≤x)
Example:
F(3)=P(X ≤ 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) = 0.9999

Example: F>(0)= P(X >0) =1‐ P(X ≤ 0) =1‐0.6561=0.3439

Complementary Cumulative Distribution Function 
(tail distribution) or CCDF: F>(x)=P(X>x)

x P(X =x )  P(X≤x)  P(X>x)
‐1 0.0000 0.0000 1.0000
0 0.6561 0.6561 0.3439
1 0.2916 0.9477 0.0523
2 0.0486 0.9963 0.0037
3 0.0036 0.9999 0.0001
4 0.0001 1.0000 0.0000



Mean or Expected Value of X

30
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• The mean = the weighted average of all possible values of 
X. It represents its “center of mass”

•The mean may, or may not, be an allowed value of X

• It is also called the arithmetic mean (to distinguish from 
e.g. the geometric mean discussed later)

• Mean may be infinite if X any integer and tail P(X=x)>c/x2









Variance of a Random Variable
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Variance can be 
infinite 
if X can be any 
integer 
and tail of P(X=x) 
≥c/x3



Skewness of a random variable

• Want to quantify how asymmetric is the 
distribution around the mean?

• Need any odd moment: E[(X‐μ)2n+1]
• Cannot do it with the first moment: E[X‐μ]=0
• Normalized 3‐rd moment is skewness: γ1=E[(X‐
μ)3/σ3]

• Skewness can be infinite if X takes 
unbounded integer values and tail P(X=x) ≥c/x4



Geometric mean of a random variable

• Useful for very broad distributions 
(many orders of magnitude)?

• Mean may be dominated by very unlikely 
but very large events. Think of a lottery

• Exponent of the mean of log X: 
Geometric mean=exp(E[log X])

• Geometric mean usually 
is not infinite



Summary: Parameters of a Probability Distribution
• Probability Mass Function (PMF): f(x)=Prob(X=x)
• Cumulative Distribution Function (CDF): F(x)=Prob(X≤x)
• Complementary Cumulative Distribution Function (CCDF): 
F>(x)=Prob(X>x)

• The mean, μ=E[X], is a measure of the 
center of mass of a random variable

• The variance, V(X)=E[(X‐ μ)2], is a measure of the dispersion 
of a random variable around its mean

• The standard deviation, σ=[V(X)]1/2, is another measure of 
the dispersion around mean. Has the same units as X

• The skewness, γ1=E[(X‐μ)3/σ3], a  measure of asymmetry 
around mean

• The geometric mean, exp(E[log X]) is useful for very broad 
distributions

40



Skewness of a random variable

• Want to quantify how asymmetric is the 
distribution around the mean?

• Need any odd moment: E[(X‐μ)2n+1]
• Cannot do it with the first moment: E[X‐μ]=0
• Normalized 3‐rd moment is skewness: γ1=E[(X‐
μ)3/σ3]

• Skewness can be infinite if X takes 
unbounded positive integer values and the tail 
P(X=x) ≥c/x4 for large x



Geometric mean of a random variable

• Useful for very broad distributions 
(many orders of magnitude)?

• Mean may be dominated by very unlikely
but very large events. Think of a lottery

• Exponent of the mean of log X:
Geometric mean=exp(E[log X])

• Geometric mean usually 
is not infinite



Summary: Parameters of a Probability Distribution
• Probability Mass Function (PMF): f(x)=Prob(X=x)
• Cumulative Distribution Function (CDF): F(x)=Prob(X≤x)
• Complementary Cumulative Distribution Function (CCDF): 
F>(x)=Prob(X>x)

• The mean, μ=E[X], is a measure of the 
center of mass of a random variable

• The variance, V(X)=E[(X‐ μ)2], is a measure of the dispersion 
of a random variable around its mean

• The standard deviation, σ=[V(X)]1/2, is another measure of 
the dispersion around mean. Has the same units as X

• The skewness, γ1=E[(X‐μ)3/σ3], a  measure of asymmetry 
around mean

• The geometric mean, exp(E[log X])  is useful for very broad 
distributions
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A gallery of useful
discrete probability distributions



Discrete Uniform Distribution
• Simplest discrete distribution. 
• The random variable X assumes only a finite 
number of values, each with equal probability.

• A random variable X has a discrete uniform 
distribution if each of the n values in its range, 
say x1, x2, …, xn, has equal probability.

f(xi) = 1/n

7



Uniform Distribution of 
Consecutive Integers

• Let X be a discrete uniform random variable all 
integers from a to b (inclusive). There are 
b – a +1  integers.  Therefore each one gets:

f(x) = 1/(b‐a+1)
• Its measures are:

μ = E(x) = (b+a)/2
σ2 = V(x) = [(b‐a+1)2–1]/12           

Note that the mean is the midpoint of a & b.

8



An example of the uniform 
distribution

Cycle threshold (Ct) value in
COVID‐19 infection



What is the Ct value of a PCR test?
Ct = const – log2(viral DNA concentration)





Why Ct distribution should it be uniform?



Examples of uniform distribution: 
Ct value of PCR test of a virus

Distribution of SARS‐CoV‐2 PCR Cycle Threshold Values Provide Practical Insight Into Overall 
and Target‐Specific Sensitivity Among Symptomatic Patients

Blake W Buchan, PhD, Jessica S Hoff, PhD, Cameron G Gmehlin, Adriana Perez, Matthew L 
Faron, PhD, L Silvia Munoz‐Price, MD, PhD, Nathan A Ledeboer, PhD American Journal of 

Clinical Pathology, Volume 154, Issue 4, 1 October 2020, 
https://academic.oup.com/ajcp/article/154/4/479/5873820



Why should we care?

• High Ct value means 
we identified the 
infected individual 
early, hopefully 
before transmission 
to others

• When testing is 
mandatory, and 
people are tested 
frequently – Ct value 
is skewed towards 
high values

Non‐
mandatory 
tests in 
Israel

Mandatory 
tests at 
UIUC 2021



Matlab exercise: Uniform distribution
• Generate a sample of size 100,000 for uniform 
random variable X taking values 1,2,3,…10

• Plot the approximation to the 
probability mass function based on 
this sample

• Calculate mean and variance of this sample 
and compare it to infinite sample predictions:
E[X]=(a+b)/2 and V[X]=((a‐b+1)2‐1)/12



Matlab template: Uniform distribution
• b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
• Stats=100000; % sample size to generate
• r1=rand(Stats,1); 
• r2=floor(??*r1)+??; 
• mean(r2)
• var(r2)
• std(r2)
• [hy,hx]=hist(r2, 1:10); % hist generates histogram in bins 

1,2,3...,10
• % hy ‐ number of counts in each bin; hx ‐ coordinates of 

bins
• p_f=hy./??; % normalize counts to add up to 1
• figure; plot(??,p_f, 'ko‐'); ylim([0, max(p_f)+0.01]); % plot 

the PMF
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