BIOE 210

PRACTICE EXAM 3

You have 80 minutes to complete this exam. You may use notes or printouts from the course website, but **no electronic resources**.

Circle your final answer for each question.

PART I (20 POINTS; 5 POINTS EACH)

(1) True or False. If a nonlinear system has only one solution, Newton's method will converge from any initial guess.

(2) A genetic counselor informs a patient that their odds of getting disease are 1 in 300. What is the probability the patient will get the disease?

(3) True or False. Every square matrix has a pseudoinverse.

(4) True or False. It is necessary to have more observations than parameters to find a least-squares estimate using linear regression.

BIOE 210 3

PART II (40 POINTS)

You are given a set of inputs (x) and responses (y)

\mathbf{x}	\mathbf{y}		
0	2.1		
1	3.1		
2	5.8		
3	11.3		

You hypothesize that these data fit one of two models: $y = \beta_0 + \beta_1 x + \beta_2 x^2$ or $y = \beta_0 + \beta_1 e^x$. You want to fit the parameters using linear regression.

Construct a design matrix for each model using the data in the above table. (The design matrix is the matrix \mathbf{X} in the linear system $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.)

You use fitlm to fit both models, with the following outputs. Linear regression model:

$$y - 1 + x + x^2$$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	2.155	0.23974	8.9889	0.070533
x	-0.345	0.385	-0.8961	0.53485
x^2	1.125	0.12298	9.1476	0.069319

Number of observations: 4, Error degrees of freedom: 1

Root Mean Squared Error: 0.246

R-squared: 0.999, Adjusted R-Squared 0.996

F-statistic vs. constant model: 421, p-value = 0.0344

Linear regression model:

y ~ 1 + expx

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	1.8553	0.25642	7.2353	0.018572
expx	0.47699	0.023746	20.087	0.0024692

Number of observations: 4, Error degrees of freedom: 2

Root Mean Squared Error: 0.355

R-squared: 0.995, Adjusted R-Squared 0.993

F-statistic vs. constant model: 403, p-value = 0.00247

Which model would give better predictions? Why?

BIOE 210 5

Find the Jacobian matrix for the following system of equations:

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_2 - 3x_1 \\ 2(x_1 + x_2) \end{pmatrix}$$

Starting with an initial guess of
$$\mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, find \mathbf{x}_1 . Use $\mathbf{J}(\mathbf{x}_0)^{-1} = \begin{pmatrix} -1/4 & 1/8 \\ 1/4 & 3/8 \end{pmatrix}$.

Evaluate $\mathbf{f}(\mathbf{x}_1)$ to show that \mathbf{x}_1 is a root of \mathbf{f} .

6

Why would Newton's method converge to a root after only one iteration?