BIOE 210, SPRING 2019

HOMEWORK 6

Due Wednesday, 5/8/2019 before 9:00am. Upload a single PDF with your answers to Gradescope.

PART I: LOGISTIC REGRESSION (20 POINTS)

You develop a logistic regression model to predict the chances of developing lung cancer over one's lifetime. The input variables are 1.) the number of cigarettes smoked per day ($\beta = 0.17$), and 2.) the number of cups of coffee consumed per day ($\beta = -0.0003$).

- (1) How much do your odds of developing lung cancer increase if you smoke one more cigarette per day?
- (2) How much do your odds decrease by drinking another cup of coffee per day?

PART II: TRANSFORMATION MATRICES (40 POINTS)

- (1) Using matrix multiplication, rotate the vector $\binom{-2}{3}$ **clockwise** by 60°. Draw the vectors before and after the rotation.
- (2) We want to see if rotation and translation commute, i.e. if rotating first followed by translation is the same as translating first and then rotating.
 - (a) Compute the matrix product $\mathbf{T}(\Delta x, \Delta y)\mathbf{R}(\theta)$ to find a single matrix that rotates by θ and then translates by Δx and Δy .
 - (b) Compute the matrix product $\mathbf{R}(\theta)\mathbf{T}(\Delta x, \Delta y)$ to find a single matrix that translates and then rotates.
 - (c) Comparing your two matrices, do the operations commute? Is there any angle θ for which $\mathbf{T}(\Delta x, \Delta y)\mathbf{R}(\theta) = \mathbf{R}(\theta)\mathbf{T}(\Delta x, \Delta y)$? Why or why not?

PART III: NONLINEAR SYSTEMS (40 POINTS)

We want to find a root for the nonlinear system

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_2 \cos x_1 \\ 2x_2^2 - 1 \end{pmatrix}$$

We will use multivariate Newton's method to find a vector \mathbf{x} such that $\mathbf{f}(\mathbf{x}) = 0$ starting from an initial guess $\mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- (1) Write the Jacobian matrix $\mathbf{J}(\mathbf{x})$ for the systems of equations.
- (2) Show that \mathbf{x}_0 is not already a root by verifying that $\mathbf{f}(\mathbf{x}_0) \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- (3) Using Newton's method, find a new guess \mathbf{x}_1 using \mathbf{x}_0 . Calculate $\mathbf{f}(\mathbf{x}_1)$. (You are welcome to use Matlab or a calculator to invert $\mathbf{J}(\mathbf{x})$ and perform any matrix multiplications.)
- (4) Repeat this two more times by finding \mathbf{x}_2 and \mathbf{x}_3 . Show that the values $\mathbf{f}(\mathbf{x}_2)$ and $\mathbf{f}(\mathbf{x}_3)$ approach $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.