Matrix Decompositions

9.1 Eigendecomposition

Let's discuss a square, $n \times n$ matrix **A**. Provided **A** is not defective, it has n linearly independent eigenvectors which we will call $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The eigenvectors are linearly independent and therefore form a basis for \mathbb{R}^n (an *eigenbasis*). We said in the last chapter that any vector **x** can be decomposed onto the eigenbasis by finding coefficients a_1, \ldots, a_n such that

$$\mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$

Multiplying the vector \mathbf{x} by the matrix \mathbf{A} is equivalent to scaling each term in the decomposition by the corresponding eigenvalue (λ_i) .

$$\mathbf{A}\mathbf{x} = a_1\lambda_1\mathbf{v}_1 + a_2\lambda_2\mathbf{v}_2 + \dots + a_n\lambda_n\mathbf{v}_n$$

We can think of matrix multiplication as a transformation with three steps.

- 1. Decompose the input vector onto the eigenbasis of the matrix.
- 2. Scale each term in the decomposition by the appropriate eigenvalue.
- 3. Reassembly, or "un-decompose" the output vector.

Each of these steps can be represented by a matrix operation. First, we collect the n eigenvalue into a matrix \mathbf{V} .

$$\mathbf{V} = (\mathbf{v}_1 \, \mathbf{v}_2 \, \cdots \, \mathbf{v}_n)$$

Each column in the matrix **V** is an eigenvector of the matrix **A**. To decompose the vector **x** onto the columns of **V** we find the coefficients a_1, \ldots, a_n by solving the linear system

$$Va = x$$

where **a** is a vector holding the coefficients a_1, \ldots, a_n . The matrix **V** is square and has linearly independent columns (the eigenvectors of **A**), so its inverse exists. The coefficients for decomposing the vector **x** onto the eigenbasis of the matrix **A** are

$$\mathbf{a} = \mathbf{V}^{-1}\mathbf{x}$$

If the inverse matrix \mathbf{V}^{-1} decomposes a vector into a set of coefficients \mathbf{a} , then multiplying the coefficients vector \mathbf{a} by the original matrix must reassemble the vector \mathbf{x} . Looking back at the three steps we defined above, we can use multiplication by \mathbf{V}^{-1} to complete step 1 and multiply by \mathbf{V} to perform step 3. For step 2, we need to scale the individual coefficients by the appropriate eigenvalues. We define a scaling matrix $\mathbf{\Lambda}$ as a diagonal matrix of the eigenvalues:

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Notice that

$$\mathbf{\Lambda}\mathbf{a} = \begin{pmatrix} \lambda_1 a_1 \\ \lambda_2 a_2 \\ \vdots \\ \lambda_n a_n \end{pmatrix}$$

so the matrix Λ scales the *i*th entry of the input vector by the *i*th eigenvalue.

We now have matrix operations for decomposing onto an eigenbasis (\mathbf{V}^{-1}) , scaling by eigenvalues $(\boldsymbol{\Lambda})$, and reassembling the output vector (\mathbf{V}) . Putting everything together, we see that matrix multiplication can be expressed as an *eigendecomposition* by

$$\mathbf{A}\mathbf{x} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{-1}\mathbf{x}$$

Equivalently, we can say that the matrix $\bf A$ itself can be as the product of three matrices ($\bf A = V\Lambda V^{-1}$) if $\bf A$ has a complete set of eigenvectors. There are two ways to interpret the dependence on a complete set of eigenvectors. Viewed technically, the matrix $\bf V$ can only be inverted if it is full rank, so $\bf V^{-1}$ does not exist if one or more eigenvectors is missing. More intuitively, the eigendecomposition defines a unique mapping between the input and output vectors. Uniqueness requires a basis, since a vector decomposition is only unique if the set of vectors form a basis. If the matrix $\bf A$ is defective, its eigenvectors do not form an eigenbasis and there cannot be a unique mapping between inputs and outputs.

In other words, if \mathbf{V}^{-1} decomposes a vector, $(\mathbf{V}^{-1})^{-1} = \mathbf{V}$ must undo the decomposition.

We use the uppercase Greek lambda (Λ) to denote the matrix of eigenvalues λ_i (lowercase lambda).

Eigendecomposition is the last time we will use the prefix "eigen-". Feel free to use it on other everyday words to appear smarter.

9.2 Singular Value Decomposition

The eigendecomposition is limited to square matrices with a complete set of eigenvectors. However, the idea that matrices can be factored into three operations (decomposition, scaling, and reassembly) generalizes to all matrices, even non-square matrices. The generalized equivalent of the eigendecomposition is called the Singular Value Decomposition, or (SVD).

Singular Value Decomposition. Any $m \times n$ matrix A can be factored into the product of three matrices

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

where

- U is an orthogonal $m \times m$ matrix.
- Σ is a diagonal $m \times n$ matrix with nonzero entries.
- V is an orthogonal $n \times n$ matrix.

The square matrices **U** and **V** are *orthogonal*, i.e. their columns form an orthonormal set of basis vectors. As we discussed previously, the inverse of an orthogonal matrix is simply its transpose, so U^{-1} \mathbf{U}^{T} and $\mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}}$. The \mathbf{V}^{T} term in the decomposition has the same role as the V^{-1} matrix in an eigendecomposition – projection of the input vector onto a new basis. The matrix U in SVD reassembles the output vector analogous to the vector V in an eigendecomposition.

The matrix Σ is diagonal but not necessarily square. It has the same dimensions as the original matrix A. For a 3×5 matrix, the Σ has the form

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 \end{pmatrix}$$

If the matrix **A** was 5×3 , we would have

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The elements along the diagonal of Σ are called *singular values*. If **A** is an $m \times n$ matrix, the maximum number of nonzero singular values is $\min\{m, n\}$. The are the analogues of eigenvalues for nonsquare matrices. However, the singular values for a square matrix are not equal to the eigenvalues of the same matrix. Singular values are

If the entries in **A** were complex numbers, the matrices \mathbf{U} and \mathbf{V} would be unitary. The inverse of a unitary matrix is the complex conjugate of the matrix transpose. always nonnegative. If we arrange Σ such that the singular values are in descending order, the SVD of a matrix is unique.

The columns in **U** and **V** are called the left and right *singular vectors*, respectively. Just as there is a relationship between eigenvalues and eigenvectors, the columns in **U** and **V** are connected by the singular values in Σ . If $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^{\mathrm{T}}$, then

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$$

and

$$\mathbf{A}\mathbf{u}_i = \sigma_i \mathbf{v}_i$$

where \mathbf{v}_i is *i*th right singular vector (the *i*th column in \mathbf{V}); \mathbf{u}_i is the *i*th left singular vector (the *i*th column in \mathbf{U}); and σ_i is the *i*th singular value (the *i*th nonzero on the diagonal of Σ).

Applications of the SVD

Rank of a matrix

The rank of a matrix \mathbf{A} is equal to the number of nonzero singular values (the number of nonzero values along the diagonal of Σ). This is true for both square and nonsquare matrices. Notice that the way we defined the diagonal matrix Σ implies that the number of singular values must be at most $\min\{m,n\}$ for an $m \times n$ matrix. This requirement agrees with our knowledge that $\mathrm{rank}(\mathbf{A}) \leq \min\{m,n\}$.

The pseudoinverse of a matrix

Our definition of a matrix inverse applies only to square matrices. For nonsquare matrices we can use the SVD to construct a pseudoinverse. We represent the pseudoinverse of a matrix \mathbf{A} as \mathbf{A}^+ . We simply reverse and invert the factorization of \mathbf{A} , i.e.

$$\mathbf{A}^+ = \left(\mathbf{V}^{\mathrm{T}}\right)^{-1} \mathbf{\Sigma}^+ \mathbf{U}^{-1}$$

We can simplify this expression with knowledge that \mathbf{V} and \mathbf{U} are orthogonal, so $(\mathbf{V}^{\mathrm{T}})^{-1} = (\mathbf{V}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{V}$ and $\mathbf{U}^{-1} = \mathbf{U}^{\mathrm{T}}$. Thus

$$\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}$$

The matrix Σ^+ is the pseudoinverse of the diagonal matrix Σ . This is simply the transpose of Σ where all entries of the diagonal are replaced by their multiplicative inverse. For a 3×5 matrix Σ :

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 \end{pmatrix}$$

the pseudoinverse Σ^+ is

$$\Sigma^{+} = \begin{pmatrix} 1/\sigma_1 & 0 & 0\\ 0 & 1/\sigma_2 & 0\\ 0 & 0 & 1/\sigma_3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Some properties of the pseudoinverse:

- If A^+ exists, then $A^+A = I$.
- If a matrix **A** is full rank, then $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$. This alternative formulation requires inverting a matrix, so the SVD form above is a far better method for finding a pseudoinverse.
- If **A** is square and invertible, then $\mathbf{A}^{-1} = \mathbf{A}^{+}$, i.e. the pseudoinverse is equal to the normal inverse.
- It is always true that $(\mathbf{A}^+)^+ = \mathbf{A}$, just as for square, invertible matrices.
- If a pseudoinverse exists, then it is unique for a given matrix.