using Plots , ControlSystemsBase , Plots.Measures, PlutoUI
Inverse Bode plots
Based on the figures below estimate the transfer function(s) that could have generated them.
Problem 1
md"""## Inverse Bode plots
Based on the figures below estimate the transfer function(s) that could have generated them.
#### Problem 1
"""
Draw asymptotes:
md"""Draw asymptotes: $(@bind p1_asymptotes CheckBox(default=false))"""
begin
num1 = [1/2, 1]
den1 = [1]
local bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
end
end
Problem 2
Draw asymptotes:
md"""#### Problem 2
Draw asymptotes: $(@bind p2_asymptotes CheckBox(default=false))
"""
begin
num2 = [900]
den2 = [1, 12, 900]
local bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
end
end
Bode plots
Problem 3
Draw the Bode plot for the below transfer function
$$G(s) = \dfrac{s+500}{500s+1}$$
md"""## Bode plots
#### Problem 3
Draw the Bode plot for the below transfer function
```math
G(s) = \dfrac{s+500}{500s+1}
```
"""
Draw asymptotes:
md"""Draw asymptotes: $(@bind p3_asymptotes CheckBox(default=false))"""
begin
num3 = [1, 500]
den3 = [500, 1]
bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
local pp1 = plot(xaxis=:log, yaxis=:log, xlim=xlims(bb[1]), ylim=ylims(bb[1]), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", ylabel="Magnitude")
local pp2 = plot(xaxis=:log, xlim=xlims(bb[2]), ylim=(-95,5), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", ylabel="Phase (deg)")
Check solution:
md"""Check solution: $(@bind p3sol CheckBox(default=false))"""