Frontmatter

If you are publishing this notebook on the web, you can set the parameters below to provide HTML metadata. This is useful for search engines and social media.

using Plots, ControlSystemsBase, Plots.Measures, PlutoUI
5.0 s

Inverse Bode plots

Based on the figures below estimate the transfer function(s) that could have generated them.

Problem 1

md"""## Inverse Bode plots

Based on the figures below estimate the transfer function(s) that could have generated them.

#### Problem 1
"""
125 μs

Draw asymptotes:

md"""Draw asymptotes: $(@bind p1_asymptotes CheckBox(default=false))"""
86.2 ms
begin
num1 = [1/2, 1]
den1 = [1]
p1func(x) = x/2
local sys = tf(num1, den1)
local bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
local zz = plot!(bb[1], ylim = (0.1, 100))
local zz = plot!(bb[2], ylim=(-5,95))
hline!(bb[1], [1], label=false, line=:dash)
scatter!(bb[1], [2], [1], label=false, marker=:o)
hline!(bb[2], [0, 45, 90], label=false, line=:dash)
vline!(bb[2], [2], label=false, line=:dash)
plot!(bb[1], [0.1, 100], p1func.([0.1, 100]), label=false)
end
end
3.6 s

Problem 2

Draw asymptotes:

md"""#### Problem 2

Draw asymptotes: $(@bind p2_asymptotes CheckBox(default=false))
"""
2.8 ms
begin
num2 = [900]
den2 = [1, 12, 900]
local sys = tf(num2, den2)
local bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
bb = plot!(bb[1], ylim=(0.001, 8))
p2func(x) = (x/30)^(-2)
hline!(bb[2], [0, -90, -180], label=false, line=:dash)
vline!(bb[1], [30], label=false, line=:dash)
vline!(bb[2], [30], label=false, line=:dash)
plot!(bb[1], [5, 300], p2func.([5, 300]), label=false, line=:dash)
scatter!(bb[1], [30], [p2func(30)], marker=:o, label=false)
hline!(bb[1], [1], label=false, line=:dash)
end
end
500 ms

Bode plots

Problem 3

Draw the Bode plot for the below transfer function

$$G(s) = \dfrac{s+500}{500s+1}$$

md"""## Bode plots

#### Problem 3
Draw the Bode plot for the below transfer function

```math
G(s) = \dfrac{s+500}{500s+1}
```
"""
128 μs

Draw asymptotes:

md"""Draw asymptotes: $(@bind p3_asymptotes CheckBox(default=false))"""
603 μs
begin
num3 = [1, 500]
den3 = [500, 1]
local sys = tf(num3, den3)
bb = bodeplot(sys,label=false, layout=(1,2), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", size=(800, 350), bottom_margin=3mm, left_margin=2mm)
local pp1 = plot(xaxis=:log, yaxis=:log, xlim=xlims(bb[1]), ylim=ylims(bb[1]), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", ylabel="Magnitude")
local pp2 = plot(xaxis=:log, xlim=xlims(bb[2]), ylim=(-95,5), xminorticks=true, yminorticks=true, minorgrid=true, xlabel="Frequency [rad/s]", ylabel="Phase (deg)")
pp1 = vline!(pp1, [1/500, 500], label=false)
pp2 = vline!(pp2, [1/500, 500], label=false)
pp2 = hline!(pp2, [0,-90], label=false)
pp1 = hline!(pp1, [1/500, 500], label=false)
vline!(bb[1], [1/500, 500], label=false)
vline!(bb[2], [1/500, 500], label=false, ylim=(-95,5))
hline!(bb[2], [0,-90], label=false)
hline!(bb[1], [1/500, 500], label=false)
269 ms

Check solution:

md"""Check solution: $(@bind p3sol CheckBox(default=false))"""
520 μs