Exercise
Calculate the first four Fourier coefficients (magnitude and phase) for this wave. Then construct a frequency plot of the magnitude components.
The wave in the first period is defined as follows:
$$ x(t) = \begin{cases} -t, \quad t<0.5 \textrm{sec} \\ 0, \quad 0.5 \leq t \leq 1 \textrm{sec} \end{cases}$$
Side note
The function to generate the wave is given below:
wave (generic function with 1 method)
And you can plot it by calling
plot(t,wave.(t))
Click to see the Matlab version
t = linspace(0, 2, 100);
y = arrayfun(@wave, t);
plot(t, y)
function [y] = wave(t)
c = mod(t, 1);
if c < 1/2
y = -c;
else
y = 0;
end
end
Solution
Sine coefficient
Find $a$'s and $b$'s and $a_0$. Then calculate the magnitude and phase.
$$b_k = \dfrac{2}{T} \int_0^T x(t) \sin(k \omega_0 t)dt = \dfrac{2}{1} \int_0^{0.5} -t \sin(2 \pi kt) dt $$
where we used $\omega_0 = 2\pi f$
Use integration by parts: $\int u \cdot dv = uv - \int v \cdot du$. Here $u = -t$ and $dv = \sin(2 \pi kt)$. We have
$$\begin{align*} v &= \dfrac{-\cos(2\pi kt)}{2\pi k} \\ \int_0^{0.5} u \cdot dv &= uv - \int_0^{0.5} v \cdot du \end{align*}$$
Show answer
$$b_k = 2 \left[ \left. -t \dfrac{-\cos(2\pi kt)}{2\pi k} \right| _{0} ^{0.5} - \int_0^{0.5} \dfrac{\cos(2\pi kt)}{2\pi k} \right]$$
which simplifies to
$$b_k = \dfrac{1}{2\pi k}\cos(\pi k)$$
b (generic function with 1 method)
Click to show MATLAB
% This is part of the activity to turn in!
Cosine coefficient
Similarly for $a$,
$$ a_k = \dfrac{2}{T} \int_0^T x(t) \cos(k\omega_0 t)dt = \dfrac{2}{1} \int_0^{0.5} -t \cos(2\pi kt) dt$$
Use integration by parts $\int u \cdot dv = uv - \int v \cdot du$. Here $u = -t$ and $dv = \cos(2 \pi kt)$. We have
$$\begin{align*} v &= \dfrac{\sin(2\pi kt)}{2\pi k} \\ \int_0^{0.5} u \cdot dv &= uv - \int_0^{0.5} v \cdot du \end{align*}$$
Show answer
$$a_k = 2 \left[ \left. -t \dfrac{\sin(2\pi kt)}{2\pi k} \right| _{0} ^{0.5} - \int_0^{0.5} \dfrac{-\sin(2\pi kt)}{2\pi k} \right]$$
which simplifies to
$$a_k = \dfrac{-1}{2\pi^2 k^2}\left[\cos(\pi k)-1 \right]$$
a (generic function with 1 method)
Click to show MATLAB
% This is part of the activity to turn in!
Constant coefficient
Now, find $a_0$
$$ C_0 = a_0 = \dfrac{2}{T} \int_0^T x(t) dt$$
Show answer
$$C_0 = \dfrac{2}{1} \int_0^{0.5} -tdt = \left. \dfrac{-2t^2}{2} \right| _{0} ^{0.5} = -0.25$$
Phase/magnitude form
Show conversion
Finally,
$$|C_k| = \sqrt{a_k^2 + b_k^2}$$
And
$$\theta_k = \tan^{-1} \left( \dfrac{-b_k}{a_k} \right)$$
c (generic function with 1 method)
The final results should look like:
c1
= 0.18866975954102655
c2
= 0.07957747154594767
c3
= 0.05423299590711398
c4
= 0.039788735772973836
$$C_1 = 0.1887 \quad C_2 = 0.0796,\quad C_3 = 0.0542,\quad C_4 = 0.0398$$
Folding code