Some constants:

- Elementary charge $q: 1.60218 \times 10^{-19}$ Coulomb
- Boltzmann constant k : 1.38065×10^{-23} Joules / Kelvin

Problem 1 Elementary operations and sinusoids
10 points
Consider the following graph of $y=f(x)$. Plot the graphs of:

Figure 1: The graph of $y=f(x)$ for Problem 1
(a) $z_{1}(x)=2 f(x / 2)$
(b) $z_{2}(x)=f(x) / z_{1}(x)$

Hint: Compare $f(x)$ to the general form of a sinusoid. You don't need to use software for this question.

Problem 2 Complex numbers
10 points
(a) If $(x+i y)^{205}=1$ then what is $(x+i y)^{204}$? Write the answer in terms of x and y in Cartesian form.
(b) Let $z, w \in \mathbb{C}$. Recall that the complex conjugate of $z=x+i y$ is $\bar{z}=x-i y$. Using this fact, show that $|z w|=|z||w|$ where $|u|$ denotes the magnitude of the complex number $u \in \mathbb{C}$.

Hint: Consider squaring the equality you want to show and what it means to multiply a complex number with its conjugate.

Problem 3 Euler Identity
(a) Is i^{i} a real number or a complex number? Explain your reasoning. If real provide a numerical value; if complex write it in Cartesian form.
(b) Find the natural logarithm of $z=1+\sqrt{3} i$; that is find $\ln (z)$. Is this logarithm unique? If yes explain why, if not give another one.

Problem 4 Complex numbers redux
(a) Use MATLAB to plot $(1+i)^{n}$ on the complex plane for $n=1,2, \ldots, 6$. Draw the x, y axis and center the plot on the origin.
(b) Given $z=r e^{i \theta}$ in polar form, derive using basic trigonometry the expression for x and y in terms or r and θ in the Cartesian form $z=x+i y$.

Problem 5 Noise sources

A 3 mA current flows through a diode (i.e a semiconductor) and a $20,000 \Omega$ (i.e $20 \mathrm{k} \Omega$) resistor. What is the net current noise, i_{n} in Amperes? Assume a bandwidth of 1 kHz (i.e. $1 \times 10^{3} \mathrm{~Hz}$) and room temperature of 295 K . Which of the two components is responsible for producing the most noise?

Problem 6 Logistic equation revisited Use MATLAB to evaluate the logistic equation

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

for different values of r :

$$
r=1.25, \quad r=2.25, \quad r=3.2, \quad \text { and } \quad r=3.6
$$

Evaluate the first 50 generations (use a for loop to increment n from 1 to 50) and start with an initial value $x=0.02$. Plot the population x as a function of generation n. Use subplot command to put the four plots together. Label the plots appropriately.

Problem 7 Logarithms
In class we showed that $\log _{a}(x y)=\log _{a} x+\log _{a} y$. Now show that
(a) $\log _{a}\left(x^{y}\right)=y \log _{a}(x)$
(b) $\log _{a}(x / y)=\log _{a}(x)-\log _{a}(y)$
(c) For real x, y show that:

$$
\int_{1}^{x y} \frac{1}{t} d t=\int_{1}^{x} \frac{1}{t} d t+\int_{1}^{y} \frac{1}{t} d t
$$

Problem 8 Plotting sinusoids
Construct plots of a 2.5 Hz sine wave and 1.5 Hz cosine wave. Make the peak amplitude of both equal to 20 units. Use a 500-point array. Make the sampling frequency 250 Hz . Plot the two waveforms in different colors superimposed and label both axes. Also plot a zero center line.

