Some constants:

- Elementary charge q: 1.60218×10^{-19} Coulomb
- Boltzmann constant k: 1.38065×10^{-23} Joules / Kelvin

Problem 1 Elementary operations and sinusoids Consider the following graph of y = f(x). Plot the graphs of:

Figure 1: The graph of y = f(x) for Problem 1

(a)
$$z_1(x) = 2f(x/2)$$

(b)
$$z_2(x) = f(x)/z_1(x)$$

Hint: Compare f(x) to the general form of a sinusoid. You don't need to use software for this question.

Problem 2 Complex numbers

- (a) If $(x+iy)^{205} = 1$ then what is $(x+iy)^{204}$? Write the answer in terms of x and y in Cartesian form.
- (b) Let $z, w \in \mathbb{C}$. Recall that the complex conjugate of z = x + iy is $\overline{z} = x iy$. Using this fact, show that |zw| = |z||w| where |u| denotes the magnitude of the complex number $u \in \mathbb{C}$.

Hint: Consider squaring the equality you want to show and what it means to multiply a complex number with its conjugate.

Problem 3 Euler Identity

(a) Is i^i a real number or a complex number? Explain your reasoning. If real provide a numerical value; if complex write it in Cartesian form.

 $10\,\mathrm{points}$

10 points

10 points

(b) Find the natural logarithm of $z = 1 + \sqrt{3}i$; that is find $\ln(z)$. Is this logarithm unique? If yes explain why, if not give another one.

Problem 4 Complex numbers redux

- (a) Use MATLAB to plot $(1+i)^n$ on the complex plane for $n = 1, 2, \ldots, 6$. Draw the x, y axis and center the plot on the origin.
- (b) Given $z = re^{i\theta}$ in polar form, derive using basic trigonometry the expression for x and y in terms or r and θ in the Cartesian form z = x + iy.

Problem 5 Noise sources

A 3 mA current flows through a diode (i.e a semiconductor) and a 20,000 Ω (i.e 20 k Ω) resistor. What is the net current noise, i_n in Amperes? Assume a bandwidth of 1 kHz (i.e. 1×10^3 Hz) and room temperature of 295 K. Which of the two components is responsible for producing the most noise?

Problem 6 Logistic equation revisited

Use MATLAB to evaluate the logistic equation

$$x_{n+1} = rx_n \left(1 - x_n\right)$$

for different values of r :

r = 1.25, r = 2.25, r = 3.2, and r = 3.6

Evaluate the first 50 generations (use a for loop to increment n from 1 to 50) and start with an initial value x = 0.02. Plot the population x as a function of generation n. Use subplot command to put the four plots together. Label the plots appropriately.

Problem 7 Logarithms

....

In class we showed that $\log_a(xy) = \log_a x + \log_a y$. Now show that

(a)
$$\log_a(x^y) = y \log_a(x)$$

(b) $\log_{a}(x/y) = \log_{a}(x) - \log_{a}(y)$

.

(c) For real x, y show that:

$$\int_{1}^{xy} \frac{1}{t} dt = \int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{t} dt$$

Problem 8 Plotting sinusoids

Construct plots of a 2.5 Hz sine wave and 1.5 Hz cosine wave. Make the peak amplitude of both equal to 20 units. Use a 500-point array. Make the sampling frequency 250 Hz. Plot the two waveforms in different colors superimposed and label both axes. Also plot a zero center line.

15 points

15 points

15 points

10 points