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Introduction

Matter is made of atoms, and atoms are made of electrons and nuclei, and nucleons are made of
quarks and gluons. Invaluably, however, it was unnecessary for Galileo, Huygens, Hooke, Newton,
Lagrange, Hamilton, and the other developers of classical mechanics from the sixteenth to the
nineteenth centuries to know anything of atomic theory, nuclear physics, or quantum chromody-
namics. The basic tools that allow us to understand anything quantitative about the universe are
dimensional analysis and decoupling of widely separated scales. You are familiar with dimensional
analysis. Decoupling, roughly speaking, is the idea that to describe phenomena at one length (or
energy, or velocity...) scale D, with finite loss of accuracy, we can set dimensionful parameters
that are very large compared to D to infinity, and parameters that are very small compared to D
to zero. You do not have to worry about the curvature of the universe, and you do not have to
worry about the Bohr radius or the QCD scale, in order to accurately predict the motion of the
planets. Subsequently, we usually have only a small number of dimensionful parameters left in
the problem, and observables can be written in terms of them using dimensional analysis, up to
some dimensionless coefficients that are often O(1). The price for this simplification is that no one
theory, if it is to be useful, will describe all scales of observation. Chemistry has no explanation
for the binding of nucleons in nuclei.

Effective field theory (EFT) is the business of applying dimensional analysis and decoupling to
construct simple, predictive, systematically improvable theories describing the dynamics of fields
at characteristic length or energy scales. The basic inputs to an EFT are a collection of degrees of
freedom that we expect to matter at the scale of interest; a specification of any symmetries that the
dynamics must exactly or approximately respect; and a finite collection of coupling parameters.
The construction of an EFT usually proceeds by identifying the most general Lagrangian or
Hamiltonian that could describe the dynamics, consistent with the symmetries, then truncating
it on the basis of dimensional analysis.

This description is so broad that one can correctly guess that EFTs are useful in both classical
and quantum mechanics, in mixed and pure states, in relativistic and nonrelativistic physics, in
continuum and lattice models, and in all dimensions. In these notes we will focus on relativistic
quantum field theory and high energy particle physics. Even here there are myriad uses of EFTs.
For example, the notion of separation of scales can be applied in various ways in particle physics,
and the simplest of these is in the hierarchies of particle masses. Here is a tower of a few of the
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elementary particle masses, by order of magnitude:

mν ∼ 1 eV

me,mu ∼ 1 MeV

mµ,mπ ∼ 100 MeV

mτ ,mc ∼ 1 GeV

mW ,mZ ,mh,mt ∼ 100 GeV

mSUSY ≳ 10 TeV???

mGUT ∼ 1016 GeV???

In general, EFTs can simplify the description of particle physics at a particular energy scale by
eliminating all particles that are too heavy to be produced in the interactions.

In quantum field theory and in statistical mechanics, the why and the how of decoupling is
explained by the renormalization group (RG). Roughly, the renormalization group tells us that
the influence of heavy degrees of freedom of massM to a process involving light degrees of freedom
with characteristic energy E ≪M can be captured by O(1) changes in a finite number of physical
constants, plus a power series in E/M . In fact RG provides both a conceptual framework to
understand why EFT works and a technical tool for simplifying precision computations. For this
reason these notes begin with a review of renormalization and RG. The goal is to expand on what
is normally covered in introductory QFT courses and develop tools that are particularly useful
for carrying out EFT analyses. For example, we will see how to generalize the “old” notions of
renormalizability, broadening the space of useful quantum field theories. We will also see how RG
flow gives rise to towers of EFTs, and how to match EFTs onto each other at their boundaries of
validity.

There are two complementary ways of looking at EFTs that we will study:

• Top down. Given a theory (“UV,” “microscopic,” “short-distance,” “high-energy”), EFT
techniques allow the systematic elimination of the theory’s heavy degrees of freedom in
order to obtain an effective (“IR,” “macroscopic,” “long-distance,” “low-energy”) theory
with the same dynamics for the light degrees of freedom. Eliminating the heavy DOF is
called “integrating out” and fixing the Lagrangian coefficients in the EFT so that the same
IR dynamics is obtained is called “matching.”

• Bottom up. Given a set of light degrees of freedom, a symmetry structure, and a scale M ,
using EFT techniques we can construct the most general Lagrangian that can contribute to
dynamical process at fixed order in the E/M expansion.

Much as a power series often has a finite radius of convergence, EFTs have natural ranges of
validity. We would not expect the description of electron scattering to be well-described by
QED for center of mass energies of order 100 MeV, where muon and pion pair production is
possible. Furthermore if we are interested in photon-photon scattering at energies below 1 MeV,
the electron can be removed and an EFT written just for the photon. One goal of this course
is to understand how to view the Standard Model through the lens of EFT. It is convenient and
computationally precise to treat the low energy effects of the weak interactions, including beta
decay and flavor-changing processes in hadron physics, using EFT generated from the top-down.
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Meanwhile bottom-up EFT is essential in the description of the strong interactions at low energies.
We will also come to think of the SM itself as an EFT, generated by some unknown physics at
even shorter distances, and we will see how the SM should be modified to incorporate testable
E/M corrections.

After discussing RG, we will introduce top-down EFT. However, we will see that this approach
is mostly not useful for the description of physics around the QCD scale. We will then take a
step back and review the constraints global symmetries impose on QFTs, showing that they can
guide the bottom-up construction of EFTs. With this machinery we will study chiral perturbation
theory, the EFT describing pion physics, among other things.

There is an important feature of renormalization that we will gloss over somewhat in the first
pass: the concept of “natural” magnitudes for renormalizable parameters. We will see that the
SM has two severe “naturalness problems,” and that curing these problems is a highly nontrivial
exercise in model building.

This summarizes the first part of the course. The second part will be about topological objects
in QFTs: instantons, monopoles, strings, domain walls, and the roles these objects play in the
infrared dynamics. We will also see some other applications of EFT reasoning. However, I haven’t
written a proper introduction for this part of the course yet. Material is present in the notes but
is still somewhat under construction.

Time permitting, there will be a third part of the course, introducing supersymmetry. This
material is not yet incorporated into these notes.
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Chapter 1

Renormalization and RG

1.1 Dimensional analysis at tree level

In relativistic QFT, we can use

[c] = L/T

[ℏc] = E · T
(
10−11 MeV · cm

)
(1.1)

to express all dimensionful quantities as energies:

1/L, 1/T,M → E (1.2)

The action is dimensionless and spacetime coordinates have dimension −1. From this we may
infer the classical scaling dimensions, or “engineering dimensions,” of fields and couplings:

[S] = 0 [xµ] = −1[∫
ddx (∂µϕ)2

]
= 0 ⇒ [ϕ] =

d

2
− 1 (= 1 in d = 4)[∫

ddx ψ̄i/∂ψ

]
= 0 ⇒ [ψ] =

d− 1

2
(= 3/2 in d = 4)∫

ddxm2ϕ2 ⇒
[
m2
]
= 2 (all d)∫

ddxλnϕ
n ⇒ [λ] = d

(
1− n

2

)
+ n (= 4− n in d = 4) (1.3)

At tree level, we can use dimensional analysis to make a powerful observation about correlation
functions. In d = 4, for example, consider the n-point momentum space correlator of scalar
fields:

⟨ϕ(pi) . . . ϕ(pn)⟩ ≡ δ4

(∑
i

pi

)
×Gn (pi;λi) . (1.4)
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The Fourier-space field ϕ(p) have classical scaling dimensions −3 in four dimensions. Let all
momenta and energies be of a similar order E. Then

Gn (pi;λi) ≃ E4−3nf

(
m2

E2
, λ4, λ6E

2, λ8E
4, . . .︸ ︷︷ ︸

dimensionless ratios

)
. (1.5)

As E → 0,

Gn (pi;λi) ≈ E4−3n

[
f

(
m2

E2
, λ4, 0, 0, · · ·

)
+O

(
λ6E

2
)]
. (1.6)

We learn:

• The mass becomes very important, or “strongly coupled,” at low E. We say that ϕ2, and
any operators with couplings of dimension [λn] > 0, are “relevant operators.”

• The importance of λ4 is the same for all E. ϕ4, and in general any operators with couplings
of vanishing dimension, are “marginal operators.”

• All “higher-dimension operators” (HDOs), or those with couplings of dimension [λn] < 0,
become weakly coupled at low energies, with importance vanishing as E−[λn]λn. These are
“irrelevant operators.”

The dimension in which an operator becomes marginal is called the critical dimension of the
operator.

In the early days, irrelevant operators were thought to be problematic, indicating a loss of per-
turbative renormalizability. We will see they are not a big deal, and in perturbation theory the
scalings above are still true after including quantum corrections, up to small calculable corrections.
Instead, it is the relevant operators that are sometimes problematic, for a different reason.

1.2 Quantum Dimensional Analysis 1

The previous discussion must be modified in quantum theory. The basic issue is that quantum
corrections introduce another scale.

Correlation functions receive quantum corrections. In perturbation theory, these may be com-
puted from loop diagrams. The corresponding Feynman integrals may be divergent: the loop
integrals sample arbitrarily high momenta, or arbitrarily short distances, causing the integrals to
diverge.

A first step in dealing with these divergences is to identify them in theories with couplings of
only positive-semidefinite engineering dimension: in this case there are only a finite number of
“primitive” (independent) divergences in one-particle irreducible (1PI) graphs. Historically, this
is also how the theory of renormalization was developed. We will relax the restriction on the
coupling dimensions later.
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Example: ϕ4 in 4D : L = 1
2
(∂µϕ)

2 − 1
2
m2ϕ2 − 1

4!
λϕ4. At one loop, divergences appear in the

two-point function

∼
∫ Λ d4k

k2 +m2
∼ Λ2 +m2 log Λ/m (1.7)

and in the four-point function

∼
∫ Λ d4k

(k2 +m2)2
∼ log(Λ/m) (1.8)

However, after that the divergent behavior terminates:

∼
∫ Λ d4k

(k2 +m2)3
∼ 1/m2 + 1/Λ2 (1.9)

Note: to extract the leading UV divergences precisely, we can set m2, pi → 0. This makes the
extraction much easier. m2 dependence can be restored on dimensional grounds.

At first sight, divergences suggest a disturbing sensitivity of the low-momentum behavior to high-
momentum degrees of freedom, and moreover a failure of perturbation theory. However, the
renormalization procedure demonstrates that this is not such a big deal. The idea is that (1) there
is a one-to-one correspondence between divergences and local operators in L, and (2) Lagrangian
parameters are not observables, so we may absorb divergences into redefined couplings: “bare”→
“renormalized.” In terms of the renormalized couplings, the correlation functions are finite. To
carry out the procedure we need:

• a way to isolate the divergences. “regularization”

• a prescription for absorption. “renormalization”

There will be some freedom in both of these steps.

Regardless of how we regulate and renormalize the theory, a consequence of the renormaliza-
tion procedure is the appearance of a “renormalization scale” or a “subtraction scale” µ in the
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correlation functions:

Gn (pi;λi, µ) = E4−3nf

(
m2

E2
, λ4, λ6E

2, . . . , µ/E

)
(1.10)

Compare with Eq. (1.5). Furthermore, the µ dependence is not arbitrary. Exploiting this, we will
see how quantum corrections modify classical scaling.

1.3 Perturbative renormalization example: φ3 in 6D

Bare lagrangian:

L0 =
1

2
(∂µφ0)

2 − 1

2
m2

0φ
2
0 −

1

6
g0φ

3
0

Standard procedure: introduce counterterms. Split L :

L =
1

2
zφ (∂µφ)

2 − 1

2
zmm

2φ2 − 1

6
zggφ

3

φ0 =
√
zφφ

m2
0 = zmz

−1
φ m2

g0 = zgz
−3/2
φ g. (1.11)

(There are many equivalent ways to introduce z’s. All a matter of convention, no physics here.)
Then split z’s:

zφ ≡ 1 + δz (1.12)

zm ≡ 1 + δm2/m2 (1.13)

zg ≡ 1 + δg/g (1.14)

Now L takes the form of a renormalized Lagrangian plus a counterterm Lagrangian, L = Lr+Lct.
Feynman rules:

We can focus on IPI diagrams, since connected Green functions are built from them. For example,
the “bubble chain” of 1-loop 1PI self energy corrections (denoted /−O/−) builds the connected
self-energy:
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This generalizes to higher loop 1P1 and n-point Green functions.

We will do two regularization and two subtraction prescriptions. One is useful for intuition, and
the other is useful for practical computation.

1.3.1 Euclidean momentum cutoff regularization

We compute the Feynman integrals in Euclidean signature, following Wick rotation p0 = ip0E.
This modifies the Feynman rule for the quadratic counterterm to

i
(
δzp2 − δm2

)
→ −i

(
δzp2E + δm2

)
. (1.15)

The self-energy diagram is

=
1

2
(−ig)2

∫
id6kE
(2π)6

i

k2E +m2

i(
(kE + pE)

2 +m2
) . (1.16)

We drop the subscript E for notational convenience, kE → k. In the large k regime of the integral
we can expand the integrand as a series in p/k and m/k. So doing, we see that the integral is of
the form ∫

d6k

k4
+
d6k

k6
(
p2,m2

)
+ · · ·

∼ (quadratic divg) + (log divg) + (finite) (1.17)

We regulate the divergences with a hard cutoff on the magnitude of the Euclidean loop momen-
tum. After introducing Feynman parameters, shifting the integration variable, and performing
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the angular integrals, we have

=
ig2

128π3

∫ 1

0

dx

∫ Λ

0

l5dl

(l2 +∆x)
2

=
ig2

128π3

∫ 1

0

dx

[
Λ2

2
+ ∆x log

m2

Λ2
+ (Λ− indep) +O (∆x/Λ)

]
=

ig2

128π3

(
Λ2

2
+

(
m2 +

p2

6

)
log

m2

Λ2
+ . . .

)
(1.18)

where ∆x = m2 + p2x(1− x).

Now let’s look at the 3-point correlator at one loop:

The large k behavior is∫
d6k

k6
+

∫
d6k

k8
(
m2, p2

)
+ . . . ∼ log Λ + finite. (1.19)

So to isolate the UV-sensitive part, we can set p→ 0. (This makes it easy - no Feynman parameters
for p = 0.) We’ll keep m around for a convenient IR cutoff. In this limit the first one-loop diagram
corresponds to the Feynman integral

(−ig)3
∫

id6k

(2π)6
i

(k2 +m2)3
= − ig3

64π3

∫ Λ

0

k5dk

(k2 +m2)3

= − ig3

64π3
log(Λ/m) + finite. (1.20)

All higher-point IPI diagrams are finite. The four-point box diagram, for example, behaves as

∼
∫

d6k

(k2 +m2)4
∼ 1

m2
. (1.21)

We have isolated the divergences. They are local,1 so we can absorb them into redefinitions of the

1polynomials in p :
∫
eipxpn ∼ ∂µδ(x).

12



local couplings in L - or equivalently, the counterterms. For example,

+

=
ig2

256π3

(
Λ2 −

(
2m2 +

p2

3

)
log

Λ2

m2
+ finite

)
− i
(
δz p2 + δm2

)
(1.22)

which shows that the quadratic counterterms have the right momentum structure to absorb di-
vergences in the self-energy diagram. We will carry out this renormalization below, but first, let
us introduce another useful regulator.

1.3.2 Dimensional regularization

Physics is regularization and renormalization scheme independent. But sometimes a good scheme
choice can make computations easier. We don’t typically use hard momentum cutoffs in QED,
because it breaks the gauge symmetry and Poincare symmetries. This can be repaired by tuning
local counterterms, but it is tedious, and computations are easier if we use covariant schemes like
Pauli-Villars or dimensional regularization. There are other reasons dimensional regularization is
useful as well, as we will see.

In dimensional regularization, Feynman integrals are regulated by replacing

µ2ϵ

∫
dd−2ϵk

kd,d−2,d−4...
. for ϵ > 0, 1, 2, . . . these are UV - finite . (1.23)

µ is a new scale needed to counteract the change in the engineering dimension of the integration
measure. “Analytic continuation in spacetime dimensions.”

Some more detailed examples of carrying out Feynman integrals in dim reg are reviewed at the end
of this chapter. Here we proceed to dimensionally regularize the primitive one-loop divergences in
the example of 6D φ3 theory.

The one-loop self-energy diagram gives

I2 = ig2
∫ 1

0

dx

∫
d6l

(2π)6
1

(l2 +∆x)2
(
∆x = m2 + p2(1− x)x

)
. (1.24)

In 6→ d dimensions,

I2 ⇒
ig2

2

∫ 1

0

dx
2(
√
π)d

Γ(d/2)

1

(2π)d
µ6−d

[(
1

∆x

)2− d
2 Γ(d/2)Γ(2− d/2)

2Γ(2)

]
set d = 6− 2ϵ

⇒ ig2

2

∫ 1

0

dx
1

(4π)3

(
4µ2π

∆x

)ϵ
∆x Γ(−1 + ϵ)︸ ︷︷ ︸

− 1
ϵ
+γ−1

⇒ ig2

128π3

∫ 1

0

dx∆x

[
−1

ϵ
−
(
1 + log

µ̃2

∆x

)]
=

ig2

128π3

(
−1

ϵ

)
× (m2 +

p2

6
) + · · · (1.25)
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At p = 0, the one loop vertex correction gives

(−ig)3
∫

id6k

(2π)6
(−1)(i3)

(k2 +m2)3
−→
d=6−2ϵ

− ig3

(4π)3
1

Γ(3)
Γ(ϵ)

(
4πµ

m2

)ϵ
= − ig3

128π3

(
1

ϵ
+O(log(µ̃))

)
. (1.26)

The Euclidean momentum cutoff and dim reg are just two common examples of regulators. Finite
spacetime lattices, Pauli-Villars, and smooth versions of the momentum cutoff all achieve the same
end. Let us now turn to step two, the renormalization prescription.

1.3.3 A mass-dependent renormalization scheme

Our first renormalization scheme is given by the following choices of counterterms in the cutoff
case:

δz = − g2

256π3

1

3
log

Λ2

µ2

δm2 =
g2

256π3

[(
Λ2 − µ2

)
− 2m2 log

Λ2

µ2

]
δg = − g3

128π3
log

Λ2

µ2
. (1.27)

The sum of the self energy diagram and counterterms, Eq. (1.22), becomes

ig2

256π3

(
Λ2 −

(
2m2 +

p2

3

)
log

Λ2

m2
+ finite

)
− i
(
δz p2 + δm2

)
=

ig2

256π3

(
µ2 −

(
2m2 +

1

3
p2
)
log

µ2

m2
+ finite

)
. (1.28)

Likewise the sum of the vertex correction and vertex counterterm becomes

− ig3

128π3
log(Λ/m) + finite− iδg

= − ig3

128π3
log(µ/m) + finite. (1.29)

Thus our choice of counterterms completely removes explicit Λ dependence at one loop, so that
the Λ→∞ limit may be taken with fixed renormalized parameters.

In introductory QFT courses, the first renormalization schemes introduced are usually defined by
the requirement that, after removing the cutoff, the loop diagrams and counterterms exactly cancel
at some particular external momentum p0. This is a physically intuitive scheme because it means
that the renormalized parameters are, to very good approximation, the masses and interaction
strengths that you would measure in scattering amplitudes around that momentum. The scheme
above is a simplified version, but analogous. Note that the introduction of µ is necessary on
dimensional grounds (because the argument of the logarithm must be dimensionless.) We see
that in this scheme µ appears both inside logarithms and in polynomials (in the mass squared
counterterm.) Such schemes are called “mass dependent.”
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1.3.4 A mass-independent renormalization scheme

It is also useful to consider “mass-independent” schemes. In these schemes, µ only appears in
logarithms, not polynomially. The significance of this property will be discussed later.

We’ll just consider mass-independent schemes in conjunction with dimensional regularization, since
that is the most common setting. Some examples:

• Minimal subtraction (MS): choose counterterms to remove 1/ϵ poles only. In effect, one
just drops 1/ϵ wherever is appears.

• Modified MS (MS): choose counterterms to remove 1/ϵ poles and log(µ̃2/µ2). In effect, one
just drops 1/ϵ wherever it appears, and replaces log(µ̃) by log(µ).

The d = 6 φ3 counterterms in dim reg with minimal subtraction are:

δz =
−g2

256π3

1

3

1

ϵ

δm2 = − g2

128π3
m21

ϵ

δg = −g3 1

128π3

1

ϵ
. (1.30)

Comparing with Eqs. (1.25),(1.26) we see that these counterterms are just throwing away the 1/ϵ
poles. Note that in this scheme the counterterms do not depend explicitly on µ. We can also
see that any renormalized amplitude will carry explicit dependence on log µ. Thus, this scale,
introduced in going from 6→ 6− 2ϵ dimensions, may be treated like the renormalization scale in
previous analysis. Masses and couplings depend on µ, so that observables are µ-independent.

1.3.5 The tadpole

An important technicality: we missed a lower-point diagram, the tadpole.

We could have added a term in the bare Lagrangian, y0φ0. This doesn’t break any symmetries of
the φ3 theory. The one-loop tadpole diagram is

=
−ig
(2π)6

∫
id6k

k2 +m2

∼ Λ4 + Λ2m2 +m4 log Λ + . . . (1.31)

There is a quartic divergence. ⟨φ⟩ indicates we were not doing our perturbative expansion around
the minimum of the potential. To do so, we choose our renormalization condition to be

= −
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Then, if we take y = 0,

⟨φ⟩ = + = 0

Once we choose this renormalization condition, all tadpole subgraphs vanish and we can forget
about it. We’ll come back to the freedom to adjust linear sources (tadpoles) for the fields later
when we discuss effective actions.

1.3.6 Outstanding issues

We have now done the basic steps to obtain all correlation functions of elementary fields in per-
turbation theory, or renormalize, φ3 theory. This procedure is general:

• Identify basic divergent IPI graphs to fixed loop order

• regulate integrals

• absorb regulator dependence into local counterterms

There are some clear outstanding issues, however:

1. How do we choose µ?

2. What are the pros and cons of mass dependent and mass independent schemes?

3. How should we handle interactions of negative mass dimension?

4. What about the scaling of correlators of composite operators?

5. Can we say anything beyond perturbation theory?

We will address these issues and identify others in the following sections.

1.4 The renormalization scale and β-functions

Bare couplings + cutoff Λ are a complete description of a QFT. No renormalization scale µ needed.
What µ describes is a family of ways to absorb large (divergent) parts of loops into renormalized,
or effective, couplings.

Different choices of µ change how much of the loop integrals are swept up into the effective
couplings (see Sec. 1.7), but physical predictions should be independent of µ. We can enforce this,
and exploit it, via

d(bare param)

dµ
= 0. (1.32)
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For example, in scalar field theory we have

dm2
0

d log µ
= 0 =

dzm2z−1
φ m2

d log µ

⇒ d logm2

d log µ
= −

d log
(
zm2z−1

φ

)
d log µ

(1.33)

So the physically equivalent choices of renormalized mass-squared parameter, and different scales
µ, are related by an ordinary differential equation.

In φ3 theory we computed the z’s in a power series in the coupling. For example, with a cutoff
regulator and a mass-dependent subtraction scheme, we obtained

zφ = 1 + δz = 1− g2

256π3

1

3
log Λ2/m2 +O(g3) (1.34)

zm2 = 1 +
δm2

m2
= 1 +

1

m2

g2

256π3

(
Λ2 − µ2 − 2m2 log Λ2/µ2

)
+O(g3) (1.35)

zg = 1 +
δg

g
= 1− g2

128π3
log Λ2/µ2 +O(g3) (1.36)

We see that the RHS of Eq. (1.33) is nonvanishing, so m2 = m2(µ). In general, renormalized
parameters can be defined to “run” with the scale introduced during regularization and renormal-
ization, according to first order, nonlinear, coupled ODEs called renormalization group equations
(RGEs). It is convenient to define

βm2 ≡ dm2

d log µ
= −m2

d log
(
zm2z−1

φ

)
d log µ

(1.37)

βg ≡
dg

d log µ
= −g

d log
(
zgz

−3/2
φ

)
d log µ

(1.38)

γφ ≡ −
d logφ

d log µ
= +

d log
(
z
1/2
φ

)
d log µ

(1.39)

Let’s compute βg, βm2 , γφ in the mass-dependent scheme to one-loop order (leading order in powers
of g.) First we use the chain rule to expand the total derivative d/d log µ:

d

d log µ
→ ∂

∂ log µ
+

dg

d log µ︸ ︷︷ ︸
βg

∂

∂g
+

dm2

d log µ︸ ︷︷ ︸
β2
m

∂

∂m2
(1.40)
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Then

βg =− g
[

∂

∂ log µ
+ βg

∂

∂g
+ βm2

∂

∂m2

]
log
(
zgz

−3/2
φ

)
=− ∂δg

∂ log µ
+

3

2
g
∂δz

∂ log µ
(to leading order in g)

=− 2g3

128π3
+

g3

256π3

=− 3g3

256π3
. (1.41)

Similarly,

β2
m =m2 ∂δz

∂ log µ
− ∂δm2

∂ log µ
(to leading order in g)

=
g2

256π3

(
−10

3
m2 + µ2

)
. (1.42)

Note that the mass-squared β-function is explicitly µ-dependent.

In order for renormalization to work, all Λ-dependence has to drop out of these β-functions, so that
they have smooth limits as the cutoff is removed. Renormalized perturbation theory accomplishes
this order by order in weak coupling. At leading order, we get it for free. At higher order, it
implies nontrivial cancellations that can be explicitly checked.

Now let’s re-derive the 1-loop β-functions usingMS. In 6−2ϵ dimensions, the bare action is

S =

∫
d6−2ϵx

[
1

2
(∂µφ0)

2 −m2
0φ

2
0 −

g0
6
φ3
0

]
(1.43)

so the coupling is dimensionful,

[g0] = ϵ. (1.44)

We require dg0
d log µ

= 0. We’ll compute β function for a dimensionless renormalized coupling,

related to the bare coupling as g0 = gµϵzgzφ
−3/2. So our previous formulas (1.39) relating the beta

functions to the z factors will require a small revision.

Again we expand the total derivative in partials. Note that because the counterterms are µ-
independent in this scheme, the only explicit µ dependence arises from ∂

∂ log µ
log(µϵ) = ϵ. Then

0 =
d

d log µ
log(gµϵzgz

−3/2
φ ) = ϵ+

1

g
βg + (βg

∂

∂g
+ βm2

∂

∂m2
) log(zgz

−3/2
φ ). (1.45)

There is no m2 dependence, and we may solve this equation for βg. We have to be a bit careful
because there are two small numbers (g and ϵ). Keep the regulator finite until the very end, since
we only expect our renormalization prescription to work to fixed order in g (we only computed
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one-loop divergences.) The solution has an expansion of the form βg ∼ ϵ
1+ 1

ϵ
g3
∼ ϵ + g3 + . . ..

Working it out, in the d = 6 limit we find

βg = −
3g3

256π3
(1.46)

after setting ϵ → 0 at the end. This is the same as (1.41): the β function for the coupling is
scheme-independent at least through this loop order.

The mass squared beta function is obtained similarly. We don’t have to add an epsilonic power of
µ because the dimension of m2 is still two. We write:

0 =
d

d log µ
log(m2zm2z−1

φ )

=
1

m2
βm2 + (βg

∂

∂g
+ βm2

∂

∂m2
) log(zm2z−1

φ ) (1.47)

and we find, in d = 6,

βm2 = −5g2m2

384π3
(1.48)

which is the same as what we got in the mass-dependent scheme, without the µ2 term. This is a
general feature which may be taken as the definition of mass independent schemes:

• in mass-independent schemes, the beta functions contain no explicit dependence
on the renormalization scale.

1.5 Quantum Dimensional Analysis 2

Now let us return to the scaling of correlation functions, including quantum corrections, and see
the roles of the anomalous dimensions and beta functions. Consider again the momentum space
correlator

⟨φ(p1) . . . φ(pn)⟩ ≡ Gn

(
pi;m

2(µ), g(µ), µ
)
δd
(∑

i

pi
)
. (1.49)

Here we have in mind a general theory in d dimensions, wherem2 represents some mass parameter,
g is a marginal coupling, and we omit other couplings for brevity.

Dimensional analysis tells us

Gn

(
xpi;m

2(µ), g(µ), µ
)
= xAGn

(
pi;m

2(µ)/x2, g(µ), µ/x
)

(1.50)

where A = n(−1−d/2)+d counts up the classical scaling dimensions of the momentum space fields

minus the scaling dimension of the momentum-conserving delta function. Also, using φ ≡ z
−1/2
φ φ0

and γφ ≡ 1
2

dδz
d log µ

, we have

dGn

d log µ
= −n

2
γφGn. (1.51)
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Integrating this RGE,

Gn

(
pi;m

2(µ0), g(µ0), µ0

)
= e

n
2

∫ µ1
µ0

γφd log µGn

(
pi;m

2(µ1), g(µ1), µ1

)
. (1.52)

Thus

Gn

(
xpi;m

2(µ0), g(µ0), µ0

)
= e

n
2

∫ µ1
µ0

γϕd log µGn

(
xpi;m

2(µ1), g(µ1), µ1

)
(1.53)

= e
n
2

∫ µ1
µ0

γϕd log µxAGn

(
pi;

m2(µ1)

x2
, g(µ1),

µ1

x

)
. (1.54)

Taking µ1/x = µ0, we find

Gn(xpi;m
2(µ0), g(µ0), µ0) = e

n
2

∫ xµ0
µ0

γφd log µxAGn

(
pi;

m2(xµ0)

x2
, g(xµ0), µ0

)
. (1.55)

Now suppose that we are in a regime where γφ ≈ γ∗φ is approximately constant over the integral
in the exponent. Then

e
n
2

∫ xµ0
µ0

γφd log µ ≈ x
n
2
γ∗φ . (1.56)

Eq. (1.55) and its generalizations are our main result thus far. We conclude that the correlation
function data of a QFT scales classically, with two modifications:

• The engineering dimension A appearing in Eq. (1.50) is modified by an “anomalous dimen-
sion” factor. In the case where γ is approximately constant,

Aclassical = n(−1− d/2) + d ⇒ Aquantum = n(−1− d/2 + ∆) + d, (1.57)

where

∆ ≡ γ∗φ/2. (1.58)

• The dimensionless interaction strength is altered to g(µ0) → g(xµ0), where ∂g
∂ log µ

= βg.

The positive-dimension coupling m2 has a classical scaling piece (the 1/x2) and a quantum
scaling m2(µ0)→ m2(xµ0), where

dm2

d log µ
= βm2 .

This discussion is exact. In practice, the beta functions and anomalous dimensions are computed
in perturbation theory, and the renormalization scale is chosen to be µ0 ∼ |pi|. Then (cf. Sec. 1.7)
there are no large logs of the form log(p/µ0) in the perturbative expansion of Gn(p; g, µ0).

The correlation functions are computed as functions of couplings, external momenta, and µ. So
we can also expand the total derivative in Eq. (1.51) in partial derivatives:

dGn

d log µ
=

∂Gn

∂ log µ
+ βgi

∂Gn

∂gi
+ βm2

∂Gn

∂m2
= −n

2
γφG (1.59)

This is the Callan-Symanzik equation. It is sometimes used to derive the beta functions, as an
alternative to the method used above. We will come back to the CS equation later when we discuss
the anomalous dimensions of composite operators.

Below we will discuss consequences of scaling and interpretations of RG evolution from several
perspectives. First, however, let us address item 3 from the list of outstanding issues above,
interactions of negative mass dimension.
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1.6 Renormalizing nonrenormalizable couplings

In our tree level analysis of scaling, it was easy to see why higher-dimension operators were
“irrelevant” in the infrared. What about quantum corrections?

Let’s add an irrelevant φ4 operator to our 6D φ3 theory:

L ⊃ −1

6
gφ3 − 1

24

λ

M2
φ4 (1.60)

Here M is some large mass scale and [λ4] = 0. Now there are new divergences already at one
loop:

If we follow our nose, we would try to absorb into the existing counterterms δz, δm2, δg, as well as
a new counterterm δλ4, and various other couplings and counterterms, including (but not limited
to)

λ5
M4

φ5,
λ6
M6

φ6 ⇔ δλ5, δλ6 (1.61)

If we include φ5 and φ6 in the theory from the start, then we find additional divergences
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which implies that we need to include an operator λ7
M8

8
φ7 with counterterm δλ7, and an operator

λ8
M10φ

8 with counterterm δλ8. And so far we have not even considered higher dimension operators
involving derivatives.

This seems to be spiraling out of control. However, all is not lost. Scaling gives us a way out. By
dimensional analysis,

Gn

(
xpi; g(µ0),m

2(µ0),
λ4(µ0)

M2
,
λ6(µ0)

M4
, . . . , µ0

)
= xAe

n
2

∫ µ1
µ0

γφd log µGn

(
pi; g(µ1),

m2(µ1)

x2
,
λ4(µ1)

M2
x2,

λ6(µ1)

M4
x4, . . . ,

µ1

x

)
= xAe

n
2

∫ xµ0
µ0

γφd log µGn

(
pi; g(µ1),

m2(µ1)

x2
,
λ4(µ1)

M2
x2,

λ6(µ1)

M4
x4, . . . , µ0

)
(1.62)

where we set µ1 = xµ0 in the last line. Now suppose that x ≪ 1 and m ≪ M , and further
suppose that µ0 and pi are not much larger than M (although they might be of order M .). Then
we see that the low-frequency, long-wavelength correlation functions of the full theory (the left
hand side of (1.62)) are equal to the (scaled) correlation functions of the original renormalizable

theory (right-hand side of (1.62) with λ⃗ = 0), with a modified coupling g → g(xµ0), and with
small corrections from higher-dimension operators. The effects of the HDOs are suppressed by
energy ratios x and m/M : contributions from λ4(µ1) are of O(x2) or O(m2/M2); contributions
from λ6(µ1) are of O(x4) or O(m4/M4), and so on. This is almost the same as our classical scaling
analysis, just with some RG for the dimensionless couplings and the mass squared parameter, and
the anomalous dimension factor.

The conclusions is this: if we compute correlation functions using perturbation theory
in both dimensionless couplings and in dimensionless ratios of pext/M and m/M , then
at fixed order in these ratios, we only need to specify a finite number of renormalized
couplings – up to a fixed, maximal operator dimension. Practically speaking, we can just
throw out divergences that are proportional to higher orders in pext/M and m/M . In principle we
could keep them, and absorb them into the renormalized couplings of higher dimension operators,
but afterward, what Eq. (1.62) tells us is that these operators do not contribute to the low-energy
correlation functions at the prescribed order in energy ratios.

This is the generalization of “renormalizable” to “effective” QFTs. We also see why, at extremely
low energies, the theory becomes arbitrarily well-approximated by a renormalizable QFT.
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With a mass-dependent renormalization scheme, we are actually restricted to µ0 ≪M . Otherwise,
in running the couplings down to µ1, we would require all λi in the β functions:

This can be truncated for µ≪M , but not for µ ∼M . If µ0 ∼M then in a typical mass-dependent
scheme, operators of all orders mix with each other strongly at the start of the flow down to µ1.
Thus even if we plan on working at low energies at some fixed operator dimension D, we cannot
solve the RGEs for the values of these couplings at low scales, because they receive unsuppressed
contributions from operators of all dimensions at the start of the flow.

We can do better by using a mass-independent subtraction scheme. (There is a price for this,
related to decoupling, discussed later.)

As an example, let us investigate the φ3 theory including operators up to dimension 8 (corre-
sponding to p2ext/M

2), using DR +MS to regulate and renormalize. Up to total derivatives, the
possible dimension 8 operators include:

λ4ϕ
4, λ3,2ϕ

2∂2ϕ, λ2,4(∂
2ϕ)2 (1.63)

where we have written them together with dimensionless couplings, collectively referred to as λ⃗.
ϕ2∂2ϕ is associated with contributions to 3-point 1PI diagrams proportional to p2ext. (∂2ϕ)2 is

associated with contributions to the self-energy proportional to p4ext. Actually, to O(λ⃗), ϕ2∂2ϕ and
(∂2ϕ)2 can be both removed by field redefinitions, and are called “redundant.” We will discuss this
more below, but to fully renormalize the theory off-shell, we may need to keep them around.

At one-loop order, to first order in the λ⃗, the following diagrams and counterterms arise:
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Correspondingly, we expect to find new contributions to the beta functions of order

βm2 ∼ m2 ×O
(
λ4m

2

M2
,
gλ3,2m

2

M2
,
g2λ2,4m

2

M2

)
βg ∼ O

(
gλ4m

2

M2
,
g2λ3,2m

2

M2
,
g3λ2,4m

2

M2

)
βλ4 ∼ O

(
g2λ4, g

3λ3,2, g
4λ2,4

)
βλ3,2 ∼ O

(
gλ4, g

2λ3,2, g
3λ2,4

)
βλ2,4 ∼ O

(
gλ3,2, g

2λ2,4
)
. (1.64)

We’ll just work out the O(λ4) contributions to βm2 , βg, and βλ4 , without doing a complete analysis.
It turns out that for this purpose it is sufficient to set external momenta to zero. Recall that∫

ddk

(k2 +∆)α (2π)d
=

1

(4π)d/2
Γ
(
α− d

2

)
Γ(α)

(
1

∆

)α− d
2

. (1.65)

The first new diagrams is:

= − iλ4
2M2

∫
id6k

(2π)6
i

k2 +m2
(Euclidean)

6→ d = 6− 2ϵ⇒ iλ4
2(4π)3

(
4πµ2

m2

)ϵ
m4

M2
Γ(−2 + ϵ)︸ ︷︷ ︸

1
2(

1
ϵ
−γ+3/2+··· )

⇒ iλ4
256π3

m4

M2

(
1

ϵ
+ log(µ̃2/m2) + 3/2 + . . .

)
(1.66)

We can absorb the 1/ϵ into δm2:

δm2 = − 1

128π3

(
g2 − λ4m

2

2M2

)
m21

ϵ
(1.67)

Next, we have:

=
3

2

(
− iλ4
M2

)
(−ig)

∫
id6k

(2π)6

(
i

k2 +m2

)2

⇒ 3igλ4
2(4π)3

(
4πµ2

m2

)ϵ
m2

M2

Γ(−1 + ϵ)

Γ(2)

⇒ 3iλ4g

128π3

m2

M2

(
−1

ϵ
+ . . .

)
(1.68)
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Here α = 2, so α− d/2→ −1 + ϵ.2 The modified counterterm:

δg = −
(
g3 + 3gλ4

m2

M2

)
1

128π3

1

ϵ
(1.69)

And finally3

= 6×
(
− iλ4
M2

)
(−ig)2

∫
id6k

(2π)6
(−1)3

(
i

k2 +m2

)3

= − 6iλ4g
2

M2(4π)3

(
1

Γ(3)ϵ
+ . . .

)
(1.70)

⇒ δλ4 = −
2λ4g

2

(4π)3
1

ϵ
. (1.71)

(We only work to O(λ4), dropping diagrams of order λ24.)

Now we can compute the modifications to the β functions. Repeating the previous procedure, we
obtain

βm2 = −5g2m2

384π3
+

λ4m
4

128M2π3
+ · · ·

βg = −
3g3

256π3
− 3gλ4m

2

64π3M2
+ · · ·

βλ4 =
g2λ4
192π3

+ · · ·

. . . (1.72)

where ellipses denote contributions from λ3,2 and λ2,4 and their beta functions. These results are
consistent with our squiggle-estimates of the necessary counterterms at this order.

Notable features of the result:
2The coefficient 3/2 is

1

3! · 4!
(3 · 4 · 3 · 3 · 2) = 3

2

which comes from a symmetry factor a sum over three diagram topologies, which all give the same result because
we compute the diagram at zero external momentum. I have about 60% confidence in this factor.
Here is everything I know about symmetry factors. If a given vertex appears n times in a diagram, we leave off

the 1/n! it should have come with from the Taylor expansion of e−iHintt, under the assumption that it will cancel
in the sum over all diagrams which differ only by a permutation of identical vertices. Then we draw all diagrams
with fixed external legs which are distinct (“different topologies”) under permutation of the vertices. Our Feynman
rules leave off the 1/4! in the coupling because that will mostly cancel with different contractions which give the
same diagram topology. On a napkin, we scribble the contraction combinatorics to make sure these rules didn’t
over/under-count, and then we multiply each diagram by a correction factor (one over the “symmetry factor”), as
needed. Then we throw away the napkin and forget how we did it.

3The coefficient 6 is reported at 55% confidence. Again this includes a sum over diagram topologies, which all
give the same result because we compute the diagram at zero external momentum.
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• λ4 only impacts βg and βm2 at order m2/M2, which→ 0 as m2 → 0. More generally, higher
dimension operators decouple from the beta functions of lower dimensional op-
erators in mass independent subtraction schemes in the massless limit. This is
obvious from dimensional analysis, and it is very useful for studying RGEs of massless or
light fields.

• βm2 ∼ m2, not ∼ µ2. If the dimensionless couplings are perturbative and m2 ≪M2, then all
the beta functions are perturbative. No extra condition on µ2 is required to control which
operators get generated, and in particular taking µ ∼M is fine – this will be useful later.

These results are general. In a mass-independent scheme, the perturbative expansion is structured
in a way that makes power counting much easier.

As discussed, to complete the computation of the beta functions of the dimension-8 operators
we would need to obtain βλ3,2 and βλ2,4 . However, at any renormalization scale, to O(λ⃗), these
operators can be removed by field redefinitions. This works as follows. Suppose we take

ϕ→ ϕ+ a∂2ϕ+ bϕ2 + cϕ︸ ︷︷ ︸
δϕ

, a, b, c ∼ O(λ⃗2). (1.73)

Then

δS =

∫
d6x (EOM) |λ⃗=0 × δϕ+O(λ⃗2) (1.74)

The equation of motion with λ⃗ = 0 is ∂2ϕ+m2ϕ+ 1
2
gϕ2 = 0. So

δL = a(∂2ϕ)2 + (ag/2 + b)ϕ2∂2ϕ+ (am2 + c)ϕ∂2ϕ+ (no derivs) (1.75)

So if we choose

a = −λ2,4
M2

, b = −1

2
ag2 − λ3,2

M2
, c = −am2 (1.76)

then we can remove λ2,4 and λ3,2, to O(λ⃗2) and keep the kinetic term canonically normalized.
This works in general for operators that are proportional to equations of motion (or equivalent to
other operators plus equations of motion). Field redefinitions cannot affect physical observables
like S-matrix elements, so these operators are called “redundant.”

A final note – we dropped total derivative operators. This is because any such operator, comprised
of n elementary fields, has a Feynman rule proportional to

∑n
i=1 p

µ
i , and therefore vanishes by

momentum conservation.

1.7 Large log resummation

Another way to think of the RG is that it is reorganizing the perturbative series as µ is changed.
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To illustrate, consider 2→ 2 scattering, or a 4-point correlation function, at one loop order in φ3

theory. We have:

The counterterm diagrams absorb the divergences in the one-loop diagrams into the renormalized
parameters, and they also introduce explicit dependence on µ0. There will be terms in the one-
loop Feynman integrals proportional to log Λ2/(p2 + m2), which become log µ2

0/(p
2 + m2) upon

addition of the counterterm diagrams. These “large logs” dominate the radiative corrections for
µ2
0 ≫ p2+m2. If we use the RG, we reorganize the perturbation series so that these corrections are

folded in already at tree level: using the RGEs with boundary condition at µ0, we then run down
to some µ2 ≃ p2 +m2. Then the tree level is O(g2(µ)) and large logs have disappeared from the
radiative corrections. This is a cheap way of increasing precision, once you know the RGEs.

Suppose we have a perturbative expansion of an amplitude

A(p) = ag2(µ0) + bg4(µ0) log p
2/µ2

0 + . . .

= ag2(µ1) + bg4(µ1) log p
2/µ2

1 + . . . (1.77)

The coupling at µ1 is related to the coupling at µ0 by the RGE, ∂g
∂ log µ

= β(g). Suppose µ0 ≫ µ1 ∼
p. Then the first line has large logarithms, but the second line does not: they have been swept up
into the running coupling.

In fact it’s even better than that. Take a solution to the RGEs. For example, if dg
d log µ

= −bg3,
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then ∫ g

g0

1

g′3
dg′ = −b log(µ/µ0)

⇒ g2 =
g20

1 + 2bg20 log(µ/µ0)
(1.78)

We will examine the physics of this expression more closely in a moment, but first, consider what
we get if we compute a tree-level scattering amplitude with g2(µ0) and g

2(µ). The amplitudes just
are proportional to g2(µ0) and g

2(µ), respectively. But

g2(µ) = g2(µ0)− g4(µ0)2b log µ/µ0

+ g6(µ0)4b
2 log2 µ/µ0

− g8(µ0)8b
3 log3 µ/µ0

+ . . . (1.79)

For µ0 ≫ p, there are large logs ∼ g4 log(µ2
0/p

2) in the radiative corrections to the first amplitude.
As discussed above, for a different choice of scale µ, these corrections have been absorbed into the
running coupling g2(µ), up to log µ2/p2 corrections. The latter are small if µ2 is chosen intelligently.
But we also got capture g6 log2, g8 log3, . . .. These are real 2, 3, 4, . . . loop corrections in the µ0

case! We get them for free from the RGE, in the tree level analysis with µ ∼ p. This is known as
“large log resummation.”

Caveats:

• Even with a well-chosen renormalization scale, we still have 1-loop corrections of the form
log( µ2

p2+m2 ) and non-logarithmic terms.

• We still have (g2)a(g2 log(µ/µ0))
n corrections with a > 1:

a = 1 : resummed by 1-loop β function

a = 2 : resummed by 2-loop β function

a = 3 : resummed by 3-loop β function

etc. (1.80)

But in general RGEs are a good tool to soak up a lot of radiative corrections, if your couplings are
accurately measured at one characteristic momentum scale and you want to make a prediction at
a smaller momentum scale.

We will illustrate the utility of log resummation further in some EFT examples later. For now, let’s
just see that for the two-point function, it is closely related to bubble chain resummation.

Recall that nonrelativistic 2→ 2 scattering amplitude is proportional to Ṽ (q), the Fourier trans-
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form of the potential one would put into the Schrödinger equation:

∼ e2

p⃗2
−→
FT

e2

4πr
= V (r) (1.81)

We can also include the one loop corrections and find the (Fourier transform of the) potential:

Ṽ 1−loop =
e2

p2

(
1 +

e2

12π2
log p2/p20

)
(1.82)

where the renormalization condition was Ṽ (p0)
1−loop = e2

p20
.Gauge invariance implies that the vertex

and electron self-energy one loop corrections cancel, so only the vacuum polarization contributes
to the corrected potential. The bubble chain

is a geometric series. We can sum it up:

Ṽ (p)resummed =
1

p2

[
e2

1− e2

12π2 log p2/p20

]
. (1.83)

However this could equally well be obtained by requiring Ṽ (p)1−loop to be independent of unphysical
scale p0:

dṼ 1−loop

d log p0
= 0→ de(p0)

d log p0
=

e3

12π2
(1.84)

→ e2(p) =
e2(p0)

1− e2(p0)
12π2 log p2/p20

. (1.85)

then e2(p)
p2

= Ṽ (p)resummed above.

Using RGE sums up diagrams and large logs without having to write the diagrams past one
loop.

1.8 Composite operators

So far, we have only discussed correlation functions of the fundamental fields. Correlation functions
with insertions of composite operators, e.g. φ2, (φ∂µφ)

2, etc exhibit additional divergences. These
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can be absorbed by rescaling the operators. In general, the operators also mix under RG. We
write a very general operator renormalization as:

O0,i ≡ Zj
iOj (1.86)

with sum over j implied. Here the Oj (O0,j) are some collection of renormalized (bare) operators.
Then we define an “anomalous dimension matrix” as

dOi
d log µ

=
d(Z−1O0)i
d log µ

= −
(
Z−1 dZ

d log µ
Z−1O0

)
i

= −
(
d logZ

d log µ

)j
i

Oj ≡ −γjiOj. (1.87)

If some operators have protected dimensions (like conserved currents), or don’t mix with each other
(usually for symmetry reasons, or on dimensional grounds), there will be zeroes in this matrix.
You can find simple examples demonstrating how to compute operator anomalous dimensions
diagrammatically in most textbooks.

We’ll do something else. We’ve already discussed how to renormalize theories with irrelevant
operators in the action, to arbitrary fixed order in p/M . You might think that since the action
is composed of local operators, the beta functions for the running couplings and the operator
anomalous dimension matrix described above might be more or less the same thing. Let’s derive
the relationship.

Suppose that the Euclidean action contains a collection of operators

S ⊃
∫
ddx

∑
i

ziλiOi. (1.88)

Now let us add

S → S +
∑
i

JiOi. (1.89)

The Ji are small constants. (More generally they can be slowly varying functions, but constants
will be sufficient for our purposes.) Since the J ’s multiply operators that are already present in
the action, no new counterterms are needed to renormalize the theory. Let us also assume that
the field strength renormalization factors for the elementary fields are at least quadratic in the
Ji.

We will use tildes to denote quantities in the theory with the Ji turned on, and remove the tildes
to denote quantities in the theory with all Ji set to zero. For example,

G̃n = Gn −
∑
k

JkG
k;n +O(J2). (1.90)

Here Gn is an n-point momentum space Euclidean correlation function of elementary fields, e.g.
Gn = ⟨φ(p1) . . . φ(pn)⟩, and Gk;n is the same correlation function with a zero-momentum insertion
of Ok, e.g. Gk;n = ⟨Ok(0)φ(p1) . . . φ(pn)⟩. Here we have used that a derivative wrt Ji “brings
down an

∫
ddxOi” in the path integral – i.e. a zero-momentum Oi insertion in the correlation

function. The beta functions are

β̃λi = βλi +
∑
k

Jk
∂βλi
∂λk

+O(J2) (1.91)
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where we used β̃λj(λi) = βλj(λi + Ji), and, by assumption, the anomalous dimensions of the
elementary fields are γ̃ = γ +O(J2).

Then the O(J) term in the Callan-Symanzik equation for G̃n is

−γki Gi;n +
∑
i

∂βλi
∂λk

∂

∂λi
Gn = 0. (1.92)

But ∂Gn/∂λi = ∂G̃n/∂Ji|J=0 = Gi;n, so∑
i

[
γki −

∂βλi
∂λk

]
Gi;n = 0. (1.93)

For this to hold for all Gi,n, we require

γki =
∂βλi
∂λk

. (1.94)

In other words, the operator anomalous dimension matrix just contains the same information
about operator mixing as the running couplings in the effective action.

Consider, for example, m2ϕ2 in a perturbative scalar field theory. Then

d(m2ϕ2)

d log µ
= βm2ϕ2 −m2γϕ2ϕ

2. (1.95)

But βm2 = m2∂m2βm2 on dimensional grounds. So m2ϕ2 is renormalization group invariant.

1.8.1 Example: Strange Physics

When we discuss EFT from the top down, we will describe how Fermi’s electroweak theory can
be obtained as a low-energy effective description of the Standard Model electroweak theory. The
basic structure is that below µ ≃ mW , the Lagrangian of QED and QCD must be supplemented
by a collection of 4-fermion operators mediating a variety of meson decays and mixings and lepton
decays. Here we use some of the operators associated with kaons to illustrate higher-dimension
operator mixing and renormalization.

Kaons are light mesons containing one strange quark and one light quark. Strangeness-number-
changing operators mediate kaon production/decay (∆S = 1) and K0− K̄0 oscillations (∆S = 2).
Only ∆S = 1 operators are present in the effective Lagrangian at tree level at µ = mW .4 These
operators have the form

L ⊃ GF√
2

∑
x,y=u,c

VxsV
†
dy (x̄αγ

µ(1 + γ5)sα)
(
d̄βγµ(1 + γ5)yβ

)
=
GF√
2

∑
x,y=u,c

VxsV
†
dy

(
Ox̄y

+ +Ox̄y
−
)

(1.96)

4As we will see, this is because single-W exchange can only change S by one unit.
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where it is useful to define

2Ox̄y
± = x̄αγ

µ(1 + γ5)sαd̄βγµ(1 + γ5)yβ ± x̄αγµ(1 + γ5)yαd̄βγµ(1 + γ5)sβ

= x̄αγ
µ(1 + γ5)sαd̄βγµ(1 + γ5)yβ ± x̄αγµ(1 + γ5)sβd̄βγµ(1 + γ5)yα. (1.97)

These are four-fermi operators,

(The particular linear combinations have nice transformation properties under the exchange of
s and y color indices, and renormalize in a nice way.) In these interactions, the quark fields are
written in the basis where the mass matrices are diagonal, and V is the unitary CKM matrix which
arises due to the mismatch between the basis that diagonalizes the down-type and up-type quark
mass matrices. α, β are color SU(3) indices. The second line of Eq. (1.97) is a Fierz rearrangement
of the first line.

Eq. (1.96) is an effective Lagrangian at renormalization scale µ = mW . Below mW , radiative
corrections cause the coefficients of the Ox̄y

± to run. If we ignore quark masses, we only need to
introduce different effective couplings for O+ and O−, without dependence on x̄ and y:

L ⊃ =
GF√
2

∑
x,y=u,c

VxsV
†
dy

(
h+(µ)O

x̄y
+ + h−(µ)O

x̄y
−
)
. (1.98)

Since all of these operators are dimension 6, their couplings hi are dimension −2. On dimensional
grounds, continuing to ignore quark masses, the beta functions must have the form

dhi
d log µ

= βi(hj, g) = γij(g)hj. (1.99)

Comparing with Eq. (1.94), we see that γij is just the anomalous dimension matrix describing
mixing of the dimension 6 operators. g denotes some gauge couplings, of which the dominant is
the strong coupling gs. At order αs = g2s/4π, γ is generated by attaching a gluon loop to the quark
lines, e.g.5

5Here the labels on the external lines correspond to fields in an operator, rather than states in an amplitude.
In all amplitude diagrams, the in state will be on the left and the out state on the right. So the “bars” on the s
and the d would be swapped in these diagrams, if they were representing an amplitude.
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So at this order the anomalous dimension matrix has the form γij = g2sAij, where A is a numerical
matrix. Using g2s = −βgs/(bgs) for the one-loop QCD coupling, the solution to Eq. (1.99) is

hi(µ) =
(
e−A/b log(gs/gs(µ0))

)
ij
hj(µ0) (1.100)

which can be easily verified. If we have a linear combination of operators that is a left-eigenvector of
A, νA = aν, then that combination does not mix with other operators, and is only multiplicatively
renormalized:

ν · h(µ) =
(
gs(µ)

gs(µ0)

)−a/b

ν · h(µ0). (1.101)

The linear combinations O± are such eigenvectors. For O+, the exponent is

−a/b = −(1/(2π2))/(11− 2/3Nf )/(8π
2) = −12/23 (1.102)

between mW and mb, where there are five light flavors active in the QCD beta function (discussed
in more detail below). For O−, the anomalous dimension is −2 times that of O+, and so the
exponent is −a/b = 24/23.

If we don’t ignore quark masses, then effects of order h2 and higher can appear in the RGE. These
will be suppressed by m2

qGF , which is not small for the top quark (in fact, mt > mW , so it is a bit
delicate how to include the top quark at all), although its effects are instead suppressed by small
CKM elements. Here we just note one effect, the generation of the ∆S = 2 operator Od̄s

+ by the
RGEs. The notation here is the same as for the ∆S = 1 operators,

Od̄s
+ =

1

2

(
d̄αγ

µ(1 + γ5)sαd̄βγµ(1 + γ5)sβ + d̄αγ
µ(1 + γ5)sβd̄βγµ(1 + γ5)sα

)
. (1.103)

Od̄s
+ is not present in the effective Lagrangian at µ = mW , but it can be generated by two ∆S = 1

operators with mass insertions in the RGE flow down to the scales of meson physics. Some such
diagrams are finite; we will see how to deal with them later. The divergent diagrams have the
form
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Divergences in this diagram contribute to a beta function for a coupling of the form VcsV
†
dcVtsV

†
dthctO

d̄s
+

(t-components of V appear by using unitarity.) The coefficient hct is also renormalized by QCD
loops. In total, the dominant contribution to its beta function is of the form (Gilman & Wise
1983)

dhct
d log µ

= βct =
αs
π
hct −

GFm
2
c

8π2

(
3

2
h2+ +

1

2
h2− − h+h−

)
(1.104)

where mc is the charm mass and h± are the coefficients of the ∆S = 1 operators described above.
Both mc and h± satisfy their own RGEs, so the whole system of coupled ODEs needs to be solved
together.

Running these couplings down from µ = mW to the scale of the charm quark or so, the ∆S =
1 operators Oc̄u

± can be used to describe decays of D-mesons (mesons with one charm quark)
into kaons, and, with rather more work, the decays of kaons into pions. (The analysis becomes
complicated below the scale of the charm quark mass.)

The ∆S = 2 operators can be used to describe K0 − K̄0 mixing.6 More precisely, the RG
analyses provide good computations of the operator coefficients ; additional input (e.g. lattice)
is needed to determine operator matrix elements with the meson states, in order to connect to
observables.

1.9 Wilsonian RG

At this stage it is useful to introduce a complementary perspective on the flow of couplings,
“Wilsonian” or “exact” RG. We start from the generating functional of connected Euclidean
correlation functions, which has the path integral expression:

ZΛ[J ] =

∫
DΛϕe

−SΛ[ϕ]−
∫
Jϕ (1.105)

6K0 and K̄0 are flavor eigenstates, produced in QCD processes, and are mass-degenerate at leading order. The
∆S = 2 operators produce an off-diagonal term in their mass matrix, causing the flavor eigenstates to oscillate. In
the absence of CP violation, a good first approximation, the mass eigenstates are K0

L (CP odd) and K0
S (CP even).

The splitting is on the order of 10−6 eV. The K0
L has a longer lifetime than K0

S because it can only decay into 3π
(CP odd), while K0

S can decay to 2π (CP even). However, CP is violated, so sometimes K0
L decays to 2π.

35



from which

1

Z

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

= ⟨ϕ(x1) . . . ϕ(xn)⟩connected (1.106)

DΛϕ =
∏
k2<Λ2

dϕ̃k, ϕ̃k =

∫
d4xeikxϕ(x) (1.107)

Here the path integral is written with an explicit momentum cutoff Λ.

Wilson: Try to “do the path integral” over Λ′2 < k2 < Λ2 modes. Assuming were only interested
in correlators for k2 ≪ Λ2, we need J̃k ̸= 0 only for k2 ≪ Λ, and doing the path integral will lead
to a new ZΛ′ [J ] that gives exactly the same predictions for the low-energy correlators:

ZΛ′ [J ] =

∫
DΛ′ϕe−SΛ′ [ϕ]−

∫
Jϕ (1.108)

where

e−SΛ′ [ϕ] ≡
∫ ∏

Λ′2<k2<Λ2

dϕ̃ke
−S[ϕ] (1.109)

SΛ′ is the “Wilsonian Effective Action” and the charge in couplings generated this way is the
“Wilsonian RG.”

In comparison to our previous discussion of RG, this is very similar, except now µ = Λ, and
we absorb all loop effects into running couplings, not just UV divergences. We expand on the
relationship in Sec. 1.9.1 below.

In simple cases, SΛ′ can be computed in perturbation theory. Here we will just sketch the procedure
for ϕ4 theory. First, we split the field as ϕ = ϕ′ + ϕ′′. ϕ′ is the real space field containing only
momenta up to Λ′, and ϕ′′ contains momenta from Λ′ to Λ:

keep → ϕ̃′
k =

{
ϕ̃k 0 ≤ k2 < Λ′2

0 k2 > Λ′2 (1.110)

“integrate out” → ϕ̃′′
k =

{
0 0 ≤ k2 < Λ′2

ϕ̃k Λ′2 < k2 < Λ2
(1.111)

Then the action has the form

Sn =

∫
d4x

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

λ

4!
ϕ4

)
(1.112)

=

∫
d4x

(
1

2
(∂µϕ

′)
2
+

1

2
(∂µϕ

′′)
2
+
m2

2
ϕ′2 +

m2

2
ϕ′′2 +

λ

4!
ϕ′4 +

λ

4!
ϕ′′4 (1.113)

+
λ

3!
ϕ′3ϕ′′ +

λ

4
ϕ′2ϕ′′2 +

λ

3!
ϕ′ϕ′′3︸ ︷︷ ︸

high−low interactions

)
(1.114)
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How do we integrate out ϕ′′? This will be our first example of “matching”: SΛ′ must be able to
reproduce the ϕ′ correlators computed using SΛ. Take for example the two-point function:

Since loops only contain momenta k > Λ′ and external lines only contain p < Λ′, we can expand
the integrals in p,m

Λ′ . Thus this procedure generates a local SΛ′ .

We can make Λ−Λ′ = dΛ infinitesimal. Let’s consider the potential couplings λnϕ
n/n!. We obtain

an infinite set of ODES,

Λdλ4
dΛ

= β4
(
λ4,Λ

2λ6, . . .
)

(1.115)

Λdλ6
dΛ

= Λ−2β6
(
λ4,Λ

2λ6, . . .
)

(1.116)

and so on. Define dimensionless couplings λ̂4 ≡ λ4, λ̂6 ≡ Λ2λ6, in terms of which

Λ
dλ̂4
dΛ

= β4

(
λ̂4λ̂6, . . .

)
(1.117)

Λ
dλ̂6
dΛ

= 2λ̂6 + β6

(
λ̂4, λ̂6, . . .

)
(1.118)

By sketching diagrams it is easy to see that

β4 =
1

16π2

(
a1λ̂

2
4 + a2λ̂6

)
+ (higher loop) (1.119)

β6 =
1

16π2

(
a3λ̂

3
4 + a4λ̂4λ̂6 + a5λ̂8

)
+ (higher loop) (1.120)

for some numerical coefficients ai. For weak coupling and Λ′ ≪ Λ, the “classical scaling term”
+2λ̂6 term dominates the λ̂6 RGE.

⇒ λ̂6(Λ
′) ≃

(
Λ′

Λ

)2

λ̂6(Λ) (1.121)

equivalent to our scaling arguments with [λ6] = −2.

Before λ̂6 becomes negligible, however, it sources λ̂4. We also saw this in our earlier treatment
of RG: UV parts of integrals involving HDOs could be absorbed by redefinitions of the local
couplings.

This has only been a sketch, because the Wilsonian RG tends to be better as a conceptual picture
of RG flows than a practical calculational method. To relate it to what we did previously, let us
discuss:

37



1.9.1 A comparison of Wilsonian RG and the standard procedure

In Wilsonian RG, we hold IR physics fixed while we change the cutoff and bare parameters. In
the standard procedure, we hold the bare parameters fixed while we change the renormalized
parameters. These are essentially equivalent. Once we remove the regulator ( take the cutoff to
infinity or set ϵ to zero) in the standard computation with counterterms, the renormalization scale
µ behaves similarly to the Wilsonian cutoff: the counterterms cancel/absorb the UV parts of loops
down to scales of order µ. The main difference is how finite corrections are handled.

In our previous treatment, after choosing µ ≈ E, we still have UV - finite (µ-independent) loop
corrections, for example

These are already absorbed into an effective φ7 correction in Wilsonian RG if we take Λ′ ∼ E.
Think of radiative corrections in an ordinary scheme as “finishing the Wilsonian RG.” In this
sense they are just two different schemes.

An additional difference will arise when we consider mass-independent renormalization schemes
like minimal subtraction.

1.10 Decoupling

In the next two sections we discuss some important features of RG flows.

The Appelquist-Carazzone decoupling theorem states that the contributions of heavy degrees
of freedom to low-momentum amplitudes are suppressed (“decouple”), apart from
contributions they make to the renormalized masses and couplings of the light degrees
of freedom.

The theorem is only manifest in the solutions to RGEs in mass-dependent renormalization schemes.
In mass-independent schemes, it fails, and one consequence of this is that large logs can still appear
when there are large hierarchies between “infrared” scales, e.g. log(m/p)-type terms. On the
other hand, we have seen that mass-independent schemes are very useful for dimensional analysis,
since they restrict the dependence of correlation functions on the renormalization scale, and for
organizing the perturbation series in a way that maintains a wider range of validity in the UV
than mass-dependent schemes. So it would be advantageous to formulate a procedure to restore
decoupling to computations carried out in mass-independent schemes. We will first illustrate how
decoupling works in QED with a mass-dependent scheme. Later we will discuss Weinberg’s “match
and run” method to enforce decoupling by hand in a mass-independent scheme.
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Consider QED in four dimensions:

L4−2ϵ = −
1

4
zγF

2
µν + izψψ̄ /∂ψ − zmmψψ̄ψ − ezeµϵψ̄ /Aψ

[e] = 0 [ψ] =
3

2
− ϵ [A] = 1− ϵ (1.122)

Here, as usual,

zγ = 1 + δγ

zψ = 1 + δψ

zm = 1 + δm/m

ze = 1 + δe/e. (1.123)

The one loop vacuum polarization has the structure

≡ iΠµν
2 (q) = i(q2gµν − qµqν)Π2(q) (1.124)

and in dimensional regularization one finds

Π2(q) = −
2e2

4π2

∫ 1

0

dx x(1− x)
(
1

ϵ
− log∆/µ̃2 + . . .

)
∆ ≡ m2 − x(1− x)q2. (1.125)

An example of a mass-dependent renormalization scheme is a momentum subtraction scheme,
defined by

δγ = Π2(q0) (1.126)

for some spacelike q0. (There is a −1 in the counterterm Feynman rule relative to the definition
of the vacuum polarization, so this has the effect of replacing Π2(q) → Π2(q) − Π2(q0).) Similar
subtractions can be used for the electron self-energy and electron-photon vertex, but for later
convenience let us take an on-shell scheme for the electron mass renormalization. Then this
parameter is the pole mass and is independent of q0 in this scheme.

Now we can compute the one-loop β function for the fine structure constant by looking at, say, the
one-loop contribution to 2-to-2 scattering. Only the vacuum polarization contributes. Requiring
e2(q0)(1 + Π2(q)− Π2(q0)) to be independent of q0, we find

βe = −
e3

2π2

∫ 1

0

dx
x2(1− x)2q20

m2 − (1− x)xq20
. (1.127)
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Let us examine the beta function in two limits, |q0| ≫ m and |q0| ≪ m. We find:

βe →
e3

12π2
(−q20 ≫ m2)

βe → −
e3

60π2

q20
m2

(−q20 ≪ m2) (1.128)

This behavior is an example of decoupling. At high RG scales (analogous to high transverse
momentum exchange) the fluctuations of the electron field contribute to the running of the elec-
tromagnetic coupling. As we lower the RG scale, eventually we reach the electron mass, and it
“decouples,” leaving only the beta function of pure U(1) gauge theory (which vanishes, since the
theory is free.) The full behavior is:

0.01 0.10 1 10 100
|q0|/m

10-4

0.001

0.010

0.100

1

12π2 βe

Unfortunately, in mass-independent schemes, decoupling no longer holds automatically. The QED
counterterms in MS are

δ3 =
e2

16π2

[
− 4

3ϵ

]
δ2 =

e2

16π2

[
−1

ϵ

]
δ1 =

e2

16π2

[
−1

ϵ

]
. (1.129)

and so

d

d log µ

z−1/2
3 z−1

2 z1︸ ︷︷ ︸
1+ e2

16π2
2
3ϵ

eµϵ

 = 0

⇒ de

d log µ
= βe =

[
− 2e3

3·16π2 − eϵ
]

1 + 2e2

16π2
1
ϵ

=
e3

12π2
− eϵ+O(e4). (1.130)
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The beta function is independent of the electron mass! This is ok if the electron is massless. But
if it is massive, it should decouple. Fortunately, there is a simple fix: we will just remove it by
hand. This procedure will be explained below.

The general solution to the RGE is

e(µ) =
e2(µi)

1− 2be2i log µ/µi
b > 0. (1.131)

So the coupling is infrared free in the massless theory, and there is a Landau pole in the UV.

1.11 Universality, RG flows, and the continuum limit

Solutions to the RGEs may be thought of as flows between fixed points. A fixed point is a value
of the couplings where the beta functions all vanish. Fixed points may be classified as Gaussian
(free), trivial, and interacting. Here trivial means empty: the far infrared of a gapped theory is
trivial, because all degrees of freedom have decoupled. The most important fixed point for high
energy physics in 4D seems to be the Gaussian fixed point. If β > 0, the coupling is weaker a low
energies, and the IR fixed point is free. If β < 0, on the other hand, the coupling weakens at high
energies, flowing to the free UV fixed point. φ3 in 6D has this property, as does QCD in 4D.

In general, if we run the couplings of a theory up to arbitrarily high scales, they may reach a
singularity, or they may approach constants. The singularity case is called a Landau pole; more
precisely the theory becomes strongly coupled, and we do not know what happens. The constant
case means that there is a UV fixed point. Such theories are said to possess a continuum
limit.7

In the standard perturbative RG, theories with only relevant, marginally relevant, and exactly
marginal couplings flow to UV fixed points. In all the examples I am aware of in 4D the UV fixed
point is Gaussian (asymptotic freedom). In a Wilsonian effective action, a theory can still possess
a continuum limit if irrelevant operators are present, but they must appear in precise proportions:
they must correspond precisely to what is generated by integrating out Fourier modes, up to
infinite momentum, in a theory defined as a relevant perturbation of a UV fixed point. For
example, φ3 theory is asymptotically free, and thus possesses a continuum limit. The Wilsonian
action with finite Λ does contain φ4 and higher couplings, because these operators are sourced by
φ3 in the RGEs. Let ĝ and λ̂ be the φ3 and φ4 couplings in units of the cutoff. The RGEs have
the qualitative form

Λ∂Λĝ = −bgĝ3

Λ∂Λλ̂ = 2λ̂− bλĝ4 (1.132)

7In the Landau pole case the theory is sometimes said to be “trivial,” meaning that it only possesses a continuum
limit if the couplings vanish (and then they vanish at all scales.) This terminology is suboptimal for two reasons.
First, “trivial” is also used to describe empty theories containing no degrees of freedom. Second, a theory doesn’t
have to possess a continuum limit in order to be a useful, nontrivial effective theory. We will see many examples
later, but QED and φ4 theory are two examples where the couplings are marginally irrelevant, and so they run to
strong coupling in the UV.
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where we retain only those couplings necessary to illustrate the point, and bg > 0, bλ > 0. If

ĝ(Λ0) = ĝ0 and λ̂(Λ0) = λ̂0, then in the far UV Λ≫ Λ0,

λ̂ ∼
(

Λ

Λ0

)2(
λ̂0 −

1

2
bλĝ

4
0

(
1− 2bgĝ

2
0 . . .

))
. (1.133)

So if we take an initial condition

λ̂0 =
1

2
bλĝ

4
0(1− 2bgĝ

2
0 + . . . ) (1.134)

then λ̂ will vanish as Λ → ∞, and the theory possesses a continuum limit. The fact that φ3

could source φ4 in the RGE is another example of operator mixing. As we have noted already, in
mass-independent schemes in massless theories, lower-dimensional operators cannot source higher
dimensional operators, on dimensional grounds.

Relevant perturbations away from a UV fixed point induce RG flows into the infrared. If the
relevant perturbations are weak, the flow is still governed by the UV fixed point for awhile, until
they run strong. (This can take an exponentially long RG time for marginally relevant couplings.)
Then the couplings are kicked away from the UV fixed point (say, because some fields decouple.)
They may be governed by another nearby fixed point for a time, until another relevant perturbation
grows strong, and they are kicked again. Eventually, the flow runs toward an IR fixed point which
govern the extremely long-distance physics (including the ground state). Because massive degrees
of freedom decouple and an infinite tower of irrelevant operators die away under RG flow to the
IR, many different field theories flow to the same IR fixed points, and the physics of all these
theories is the same at low enough energies. This is the phenomenon of universality.

We have mostly focused on weakly coupled theories, where perturbation theory around a Gaussian
fixed point can be used to approximate the beta functions and anomalous dimensions. In these
theories, to a good approximation, the classical scaling dimensions govern the importance of
relevant and irrelevant operators across a large range of scales. The most important quantum
effects in perturbative theories concern the classically marginal operators: since they sit on the
line between relevant and irrelevant, a small perturbation has a big effect on them after many
e-folds of RG evolution. For example, asymptotically free couplings often flow, after a long time,
to a strong coupling regime. Alternatively, another relevant perturbation – like a mass – may
change the trajectory, or in some special cases the coupling may flow to a weakly coupled IR fixed
point.

In 4D physics, what often happens when a coupling runs strong in the infrared is that the degrees
of freedom undergo a dramatic reordering, a mass gap develops, and the actual IR fixed point is
either trivial (empty) or free. This is what happens in QCD and its relatives. In pure Yang-Mills, it
is believed that a mass gap develops, the lightest degrees of freedom are “glueballs,” (heuristically,
bound states of many gluons) and the far IR is empty. In QCD with vanishing quark masses, it
seems that the lightest degrees of freedom would be massless, IR-free Goldstone bosons associated
with spontaneous chiral symmetry breaking. Remarkably, the mass scale of the glueballs in YM
and the scale of the chiral condensate in QCD can still be estimated using the perturbative beta
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function. In both cases the 1-loop RGE has the form

dg

d log µ
= − bg3

16π2
(1.135)

with b > 0. Then if the coupling is perturbative at some UV scale µi, it runs strong at some
exponentially (but not infinitely) lower scale

Λ ≡ µie
− 8π2

2bg(µi)
2 . (1.136)

(Note: Λ is not the hard momentum cutoff discussed previously. It is an unfortunate overloading
of the symbol.) The important thing about Λ is that it is physical, i.e. RG invariant:

dΛ

d log µi
= 0. (1.137)

The existence of a new physical scale, the “dynamical scale,” is usually a good prediction of the RG.
Its precise value is not, since g naively diverges as µ→ Λ , so perturbation theory is breaking down.

Nonetheless at the order-of-magnitude level it provides a reasonable estimate for the physical IR
scales in many asymptotically free theories.

It is also an interesting possibility that the infrared of a theory is described by a strongly interacting
fixed point. Empirically, this seems to be much more important for statistical mechanics in lower
dimensions, and less important for particle physics in four dimensions. We will return to the
discussion of “conformal windows” when we study supersymmetric gauge theory later.

Near a fixed point,

γ → γ(g∗i ) ≃ constant (1.138)

⇒ e
n
2

∫ µ1
µ0

γ d log µ
=

(
µ1

µ0

)γ(g∗i )n/2
= (xγ∗)n/2 (1.139)

(1.140)
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This is why we considered the special case “γ is approximately constant” earlier, and the scaling
is the origin of the name “anomalous dimension.” In simple models like gauge theory or φ4 or
φ3, we can rewrite the anomalous dimension factor in a useful way. Using the beta function, the
integral in the exponent can be rewritten:

e
n
2

∫
γ(g) dg

β(g) (1.141)

For example, in φ3 theory, we have

e
n
2

∫
(− 1

9g
)dg =

(
g(µ1)

g(µ0)

)− n
2·9

. (1.142)

We saw this sort of thing already in the discussion of four-Fermi operators.

1.11.1 Lattice gauge theory

In lattice gauge theory, a continuum gauge theory is approximated by discretizing spacetime. The
lattice spacing a acts as a UV cutoff, and on shorter distance scales, the lattice theory is completely
different from the continuum theory. Under what circumstances should the physics of the lattice
theory on some length scale x well-approximate the physics of the continuum theory?

Generally speaking the lattice theory can be thought of as differing from the continuum theory
at the renormalization scale µ ≃ 1/a by an infinite tower of higher dimension operators, with
couplings set by powers of a. We know that as we flow to lower scales these operators will die
away. So we certainly want x/a≫ 1, so that the operators die away enough. This is just classical
scaling. We also want weak coupling, so that the irrelevant operators don’t have much impact
before they are suppressed. The lattice theory won’t exactly lie on the renormalization trajectory
to have a continuum limit, because that would require tuning an infinite number of operators,
as in Eq. (1.134) but for all operators. But that doesn’t matter if the theory starts near enough
to the UV gaussian fixed point. It will still flow toward the surface of marginal and relevant
perturbations before leaving the fixed point, and it will be in the same universality class as the
desired continuum theory. Usually, to improve this convergence, “improved actions” are used,
which cancel the first few irrelevant operators of lowest dimension.

1.12 Appendix: Doing Feynman Integrals in Dim Reg

First one introduces Feynman parameters and shifts variables get to a notationally symmetric
integral, eg

I =

∫ 1

0

dx

∫
ddkE

(2π)d(k2E +∆x)α

=

∫ 1

0

dx

(∫ ∞

0

kd−1
E dkE

(k2E +∆x)α

)
2πd/2

Γ(d/2)(2π)d
(1.143)

using
∫
dΩd = 2πd/2/Γ(d/2). If d < 2α, the integral in parenthesis is finite and gives(

1

∆x

)α− d
2 Γ
(
d
2

)
Γ
(
α− d

2

)
2Γ(α)

. (1.144)
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Now let us specialize to four dimensions. We set d = 4− 2ϵ, and multiply by µ2ϵ. We have

IDR =

∫ 1

0

dx

[
µ2ϵ

(
1

∆x

)α−2+ϵ
]

Γ(α− 2 + ϵ)

(2
√
π)4−2ϵΓ(α)

(1.145)

This is valid for ϵ > α− 2, but we will continue back to ϵ = 0 after subtractions.

Now let us look at some values of α.

• α = 2. Our original momentum integral behaves in the UV like
∫
d4/k4, which is logarith-

mically divergent. Expanding the x integrand around ϵ = 0, we have(
µ2

∆

)ϵ
Γ(ϵ)

(2
√
π)4Γ(2)

= [1 + ϵ log(4πµ2/∆) +O(ϵ2)] [1/ϵ− γ +O(ϵ)] (2
√
π)4

=

(
1

ϵ
+ log

4πµ2

∆
− γ + o(ϵ)

)
1

16π2

→ 1

16π2

(
1

ϵ
+ log

µ̃2

∆

)
, µ̃2 ∼= 4πe−γµ2 (1.146)

(Each loop in 4D comes with a factor of 1/16π2.) We see that the log Λ UV divergence
reappears in dim reg as a 1/ϵ pole.

• α = 1. Our original momentum integral behaves in the UV like
∫
d4/k2, which is quadrati-

cally divergent. Expanding the x integrand around ϵ = 0, we have

∆

(
µ24π

∆

)ϵ
Γ(−1 + ϵ)

16π2Γ(1)

⇒ ∆

16π2

(
1 + ϵ log

4πµ2

∆

)(
Γ(ϵ)

ϵ− 1
≃
(
1

ϵ
− γ
)
(−1− ϵ)

)
⇒ ∆

16π2

[
−1

ϵ
−
(
log

µ̃2

∆
+ 1

)]
(1.147)

The Λ2 UV divergence has reappeared as a −1/ϵ pole. The only difference between the
power law divergence and the logarithmic divergence in dim reg is the sign in front of 1/ϵ.

• Any α, and ∆ = 0. These are called scaleless integrals and can be set to zero self-consistently
in dim reg. Eg

∫
d4k
k2

=
∫

d4k
k4

= 0. (For discussion, see Leibbrant review. It is easy to believe

for
∫

d4k
k2

on dimensional grounds, but less obvious for
∫

d4k
k4

, and easy but wrong “proofs”
exist.)

1.13 Appendix: Subtleties with Divergent Integrals

In this appendix we discuss three examples of how divergent or ill-defined momentum integrals
can have problems with changes of integration variables (commuting with limits). For example,
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when there is a shift in momentum in a divergent integral, we have to regulate the integral, and
the shift may affect the regulator. (E.g. a momentum cutoff would shift.)

The simplest example is the vacuum polarization in QED. The Feynman integral is divergent and
must be regulated before doing the momentum shift to put the integral in standard form. it can
be cured by dimensional regularization, Pauli Villars (although many fermions are needed), or a
cutoff with a counterterm to restore gauge invariance.

The next simplest example is in h → gg, the Higgs decay to gauge bosons. The cross diagram
(p1, µ ↔ p2, ν) ends up contributing the same as the uncrossed diagram. There is a subtlety in
that although the result for each diagram is finite after we do the first momentum shift, before
we do the shift they are divergent. A regulator is needed to get an unambiguous answer. In the
vacuum polarization case, the regulator introduces new scheme dependence. In the h→ gg case,
there is no counterterm (the operator is dimension 5) so it had better be regulator independent in
the end, but we need some regulator to make the momentum shift in the first place. For example,
in d = 4− 2ϵ dimensions, the fermion trace in the loop has an O(ϵ) piece (from ℓµℓν → ℓ2/dgµν)
that sits in front of a UV divergent piece ∼ 1/ϵ. So ϵ/ϵ ∼finite. By just working in d = 4 we
would miss this finite bit (equivalent to taking ϵ→ 0 before doing the integral.)

The last example is the chiral anomaly calculation. We compute

ΓAAJ ≡ T
〈
∂µJ

µ5AρAσ
〉

(1.148)

Feynman diagrams:

The corresponding Feynman integrals are

ΓAAJ =
g2

(2π)4

∫
d4pTr

(
/qγ5

1

/p+ /k1
/ϵ1
1

/p
/ϵ2

1

/p− /k2
+ (1↔ 2)

)
(1.149)

The integral is linearly divergent. The following procedure is tempting but incorrect. First,
write

/qγ5 = −γ5
(
/k1 + /p

)
−
(
/p− /k2

)
γ5 (1.150)

and use it to write the traces as

Tr(− γ5/ϵ1
1

/p
/ϵ2

1

/p− /k2
− γ5

1

/p+ /k1
/ϵ1
1

/p
/ϵ2 − γ5/ϵ2

1

/p
/ϵ1

1

/p− /k1
− γ5

1

/p+ /k2
/ϵ2
1

/p
/ϵ1). (1.151)
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Now shift p → p + k2 in term 1 and p → p − k1 in term 2, and use the anticommutativity of γ5
and the cyclicity of the trace:

Tr(− γ5/ϵ1
1

/p+ /k2
/ϵ2
1

/p
− γ5

1

/p
/ϵ1

1

/p− /k1
/ϵ2 + /ϵ2γ5

1

/p
/ϵ1

1

/p− /k1
+ γ5/ϵ1

1

/p+ /k2
/ϵ2
1

/p
). (1.152)

Pairwise cancellation! By such formal manipulations, we might conclude that the graphs van-
ish.

But we committed a mathematical sin. The integrals are meaningless. They have to be regulated
in order for the symbols to mean anything. It turns out that once we regulate the integrals,
the cancellation is imperfect, and we get a finite contribution from the UV. For example, with
Pauli-Villars, we would subtract the same expression but with heavy fermions of mass Λ in the
loop:

− g2

(2π)4

∫
d4pTr

(
/qγ5

1

/p+ /k1 − Λ
/ϵ1

1

/p− Λ
/ϵ2

1

/p− /k2 − Λ
+ (1↔ 2)

)
(1.153)

Adding these terms to the previous cuts off the linear divergence around Λ. The PV fields enable
the momentum shifts above, but give new contributions as well. In the PV terms we can do a
similar rearrangement:

/qγ5 = −γ5
(
/k1 + /p− Λ

)
−
(
/p− /k2 − Λ

)︸ ︷︷ ︸
these will drop out

γ5 − 2Λγ5 (1.154)

so after doing the now-valid shifts for both the regular and PV terms, what survives is:

g2

(2π)4

∫
d4pTr

(
−2Λγ5

1

/p+ /k1 − Λ
/ϵ1

1

/p− Λ
/ϵ2

1

/p− /k2 − Λ
+ (1↔ 2)

)
. (1.155)

This we can tackle with Feynman parameters, etc. The leading term for large Λ is of the form

g2Λ2

(2π)4
ϵµνρσk

µ
1k

ν
2ϵ
ρ
1ϵ
σ
2

∫
d4p

1

(p2 − Λ2)3
(1.156)

where the Levi-Civita symbol came from Tr(γ5γµγνγργσ). In the large Λ limit the integral gives
π2/2Λ2 that cancels the Λ2 in front, leaving a finite, regulator-independent contribution. Inverting
LSZ,

ϵµνρσk
µ
1k

ν
2ϵ
ρ
1ϵ
σ
2 ∼ FF̃ . (1.157)

As an operator, one finds

∂µJ
µ5 =

g2

8π2
F µνF̃µν (1.158)

in the case of abelian gauge fields, or

∂µJ
µ5 =

g2

16π2
F aµνF̃ a

µν (1.159)
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in the nonabelian case.

Anomalies arise due to an incompatibility between the symmetry and the UV regulator, as this
example illustrates. We used Pauli-Villars, but one can also use dim reg. γ5 is troublesome to
define in d dimensions. ‘t Hooft and Veltman suggested γ0 · · · γ3. Peskin & Schroeder calculate
the anomaly this way.

Now an important subtlety:

FF̃ = ∂µKµ, Kµ = ϵµpσ

(
AaνF

a
ρσ −

2

3
fabcAaνA

b
ρA

c
σ

)
. (1.160)

So why not just redefine the current,

Jµ5 → Jµ5 −Kµ? (1.161)

Kµ is not gauge invariant, so we cannot make this shift and obtain an observable current. Even
it the abelian theory:

Kµ = ϵµνρσAν∂ρAσ

∆K = ϵµνρσ(∂νλ∂ρAσ︸ ︷︷ ︸
̸=0

+Aν∂ρ∂σλ) (1.162)

But it is a total derivative: can it affect the path integral?

δL = α∂µJ
µ5 ∝ αFF̃ (1.163)

In the abelian case, finite Euclidean action
∫
d4xEFF (sum of squares) implies Fµν < 1/r2, and

F = dA implies A < 1/r, so FF̃ < 1/r4 and the fields go to zero fast enough on the boundary so
that the integral of the Chern-Simons term vanishes. But in the nonabelian case, F < 1/r2 does
not imply A < 1/r. There can be cancellations between ∂µA

a
ν and fabcAbµA

c
ν . We will see later

that there are configurations, even semiclassically, for which F ∼ 1/r4, A → 1/r. These give a
finite boundary contribution

∫
FF̃ = finite. So the anomaly is physical.

1.14 Appendix: “Effective Actions”

Confusingly, the term “effective action” is used for closely related objects which are often described
in such different language that their relationship is completely obscured.

In a QFT course, one usually first meets the “1PI effective action,” introduced by computing the
generating functional (of connected correlators) from the path integral and then Legendre trans-
forming it. This effective action is itself a generating functional of 1PI correlators. The Legendre
transformation definition is equivalent to another definition, the “background field method,” which
may be more intuitive. First, in the action, shift the fields by fixed classical backgrounds. Then,
adjust sources so that the fields you are path integrating over have vanishing tadpoles. Finally,
do the path integral. The resulting functional of the classical background fields is the effective
action.
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In slightly more detail, recall that the generating functional is

Z[J ] =

∫
Dϕei

∫
(L[ϕ]+Jϕ). (1.164)

Taking functional derivatives of Z[J ] wrt J generates correlators of the fields ϕ. Here the notation
is general: ϕ could be scalars, fermions, gauge fields, and J denotes linear sources for all of them.
We also define the object

W [J ] = −i logZ[J ]. (1.165)

Taking functional derivatives of W [J ] wrt J generates connected correlators of the fields ϕ. Now
define the slightly modified objects

Z[J [Φ],Φ] =

∫
Dϕei

∫
(L[ϕ]+J [Φ](ϕ−Φ)) = Z[J [Φ]]e−i

∫
J [Φ]Φ

Γ[Φ] = −i logZ[J [Φ],Φ] (1.166)

where the source is adjusted so that J⟨0|ϕ|0⟩J = Φ. Γ[Φ] is the effective action. Intuitively, it is
“the classical action plus quantum corrections” in the presence of sources that generate specified
background fields Φ, without including an action contribution from the source term (because
J [Φ](ϕ− Φ)→ J [Φ](⟨ϕ⟩ − Φ) = 0).

For low momenta this effective action is equivalent to a Wilsonian effective action with a low cutoff
scale whenever the spectrum is gapped. If there are massless particles, the 1PI effective action
typically has IR singularities (nonlocal terms) which are never present in a Wilsonian action, by
construction.

What is Γ[Φ] good for, and how do we compute it? We’ll look at these in reverse. There are two
main methods for computing the effective action in perturbation theory. Both use the fact (true,
but we have not proved it) that Γ[Φ] is the generating functional of 1PI graphs.

• The first method is valid to all orders in the background field. One defines the shifted field
ϕ′ = ϕ− Φ, so that

Z[J [Φ],Φ] =

∫
Dϕ′ei

∫
(L[ϕ′+Φ]+J [Φ](ϕ′)) = Z[J [Φ]]e−i

∫
J [Φ]Φ (1.167)

Derive the exact Feynman rules for ϕ′, in perturbation theory around ϕ′ = 0, from the
Lagrangian L[ϕ′ +Φ], treating Φ as a contribution to the propagator and various couplings
and dropping any tadpoles. Then, since there are no external ϕ′ lines, sum up the 1PI
vacuum graphs through a given loop order. This method gives the effective action to fixed
order in ℏ and all order in Φ. Generally it only works for very simple Φ.

• The second method treats the background field perturbatively. Again we derive Feynman
rules for ϕ′, in perturbation theory around ϕ′ = 0, from the Lagrangian L[ϕ′ + Φ]. But this
time ϕ′ has its ordinary propagator and interactions, plus interactions with Φ′, and we treat
Φ as separate field which can only appear in external lines. This works for any Φ, but it
only generates the effective action as a series and derivative expansion in Φ, ∂µΦ, etc.
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At one loop order, each method for computing the effective action is equivalent to expanding
the fields in the path integral to quadratic order in small fluctuations and integrating over the
fluctuations, which results in various functional determinants.

A common use of the effective action defined this way is to obtain values of the fields in simple
states, including quantum corrections. This is because

δΓ

δΦ
= J⟨0|ϕ|0⟩J

δJ

δΦ
− δJ

δΦ
Φ− J [Φ]

= −J [Φ]. (1.168)

So, if we know Γ and we solve the “quantum corrected equation of motion” δΓ
δΦ

= 0 for fields Φ,
the result gives us ⟨ϕ⟩ in the absence of any sources. Often one is interested in vacuum states
with constant (in spacetime) fields. Then one can define a related object called the effective
potential,

Γ[Φ] = −
∫
d4xVeff [Φ]. (1.169)

In other words, Veff [Φ] is the quantum-corrected energy density in the presence of constant back-
ground fields. The minimum of the effective potential gives the ground state of ϕ.

Another use of the term “effective action” arises when some matter fields appear only quadratically
in the action, and have couplings to other scalar, gauge, or gravitational fields. Since the action
is quadratic in the matter fields, the path integral over them may be carried out exactly, without
integrating over the other fields. For example, the Minkowski path integrals for a charged Dirac
fermion and a charged scalar coupled to a gauge field are

Z[A] =

∫
DψDψ̄ei

∫
d4xψ̄(i /D−m)ψ = det(i /D −m) (1.170)

and

Z[A] =

∫
DϕDϕ∗ei

∫
d4xϕ∗(−D2−m2)ϕ =

[
det(D2 +m2)

]−1
. (1.171)

Here D = ∂ + ieA. All coordinates and derivatives are Minkowski, but these results are obtained
by continuing t → −iτ , ∂2 → −∂2E, D2 → −D2

E, etc., doing the Gaussian integrals, and then
continuing back. The effective action for the gauge fields is defined as

Γ[A] = −i logZ[A] ∝ Tr(log(G−1[A])) (1.172)

where G−1[A] is the inverse of the matter field propagator in the presence of the field A. So
this is exactly like method (1) for computing the full 1PI effective action of some background
gauge fields, at one loop order, except we haven’t included contributions from self-interactions of
the gauge fields. The full 1PI effective action, at one loop order, would include extra functional
determinants from expanding the gauge field self-interactions to quadratic order in small fluctu-
ations and integrating over the fluctuations. It is common to use the term “effective action” for
either object, but this can be confusing, since we did not have to discuss shifted fields, Legendre
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transforms, sources, etc in (1.170)–(1.172). We just treat A as the background field ab initio. The
equivalence to method (2) for computing the full 1PI effective action arises when the functional
determinants are computed in a power series in A.

Some further comments...

Since the Dirac operator i /D−m is hermitian, its eigenvalues are real, and the operator −i /D−m
has the same eigenvalues. Therefore we can rewrite the determinant as

det(i /D −m) =
√
det [(D2 +m2)14×4] (1.173)

In Euclidean signature we obtain∫
DψDψ̄e−

∫
d4xψ̄( /D+m)ψ = det( /D +m). (1.174)

The Euclidean effective action in each case is

ΓE = −Z1 = − logZ = aTr log(−D2
E +m2) (1.175)

with a = −2 for the Dirac fermion (1/2 from the log-square-root and 4 from the trace) and a = +1
for the complex boson.

An aside: one also sometimes notes that /D is “γ5 hermitian,” i.e. γ5 /Dγ5 = /D
†
, so e.g. γ5( /D +

m+ µγ0)γ5 = ( /D
†
+m− µγ0) = ( /D +m∗ − µ∗γ0)†. So

det( /D +m+ µγ0) = det(γ5( /D +m+ µγ0)γ5) = det( /D +m∗ − µ∗γ0)† (1.176)

which shows that both the theta term and the chemical potential lead to complex path integral
measures for gauge fields.

These trace-logs can also be written in a worldline formalism. For the complex boson,

Z1 = −Tr log(−D2 +m2)

=

∫ ∞

0

dβ

β
e−βm/2

∫
Dx e−A , (1.177)

A =

∫ β

0

dλ

(
1

2
m(∂λx

M∂λxM)− ieAM∂λxM
)
. (1.178)

This can be derived by starting from a quadratic formulation with a metric and gauge fixing, as
done in the enormous textbook on path integrals by Kleinert. The integral over dβ/β can be
thought of as lengths of the worldlines, divided by redundancy in the starting point. For the
fermion a similar expression holds, although to really describe a fermion in QM we should also
put in the appropriate Grassmann variables and couplings as Kleinert does.

Here is another approach to deriving the worldline representation, for a real scalar in curved
Euclidean-signature space, following hep-th/9503016. ( This is outside the main thread of these
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notes and can be skipped.)

βF =
1

2
log det(−D2 +m2)

= −1

2

∫
dnx
√
g

∫ ∞

ϵ2

ds

s
e−sm

2

K(s, x, x) (1.179)

with the heat kernel trace defined as the∫ ∫
dnx
√
gK(s, x, x) = Tr(⟨x|e−s(−D2)|x′⟩) =

∫
dnx
√
g⟨x|e−s(−D2)|x⟩. (1.180)

The notation here is kind of annoying, but is supposed to mean “think of the operators D2 or
esD

2
as matrices in the position basis.” First imagine some basis-independent abstraction of the

operator D2. Call it H. H can act on a vector, H|ψ⟩. We can insert complete sets,∫
dnx

∫
dnx′

√
g(x)

√
g′(x)|x′⟩⟨x′|H|x⟩⟨x|ψ⟩ =

∫
dnx

∫
dnx′

√
g(x)

√
g′(x)|x′⟩Hx′xψ(x) (1.181)

and write the matrix elements Hx′x = ⟨x′|H|x⟩ = D2
xδ
n(x− x′)/

√
g(x).

In the Schwinger proper length integral, ϵ2 is a UV cutoff. To go from the first line to the second
line, write

log det(−D2 +m2) = Tr log(−D2 +m2)

= Tr

∫
dm2(−D2 +m2)−1

= Tr

∫
dm2

∫ ∞

0

dse−s(−D
2+m2)

= Tr

∫ ∞

0

ds

s
e−s(−D

2+m2)

=

∫ ∞

ϵ2

ds

s
e−sm

2

K(s, x, x). (1.182)

Finally we use that e−s(−D
2) is the quantum mechanical Euclidean propagator for a particle moving

in n dimensions with Euclidean time s. This has a path integral representation in the coordinate
basis,

⟨x|e−s(−D2)|x′⟩ =
∫
x(0)=x,x(s)=x′

Dxe−
∫ s
0 ds

′ 1
4
gµν∂sxµ∂sxν (1.183)

For favorable metrics we can evaluate this path integral directly or semiclassically. Birrell and
Davies instead mainly consider the adiabatic expansion of K for small s, where one gets a bunch of
geometrical coefficients and powers of s that include some finite number of inverse powers.

52



1.15 Appendix: Yang-Mills theory

For semiclassical purposes, it is often useful to work with a gauge field normalization such that
the (Lorentzian) action takes the form:

SYM = − 1

2g2

∫
d4xTr (FµνF

µν) + θ term

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ]
Aµ = AaµT

a a = 1 . . . dim(G)

T † = T
[
T a, T b

]
= ifabcT c. (1.184)

Canonical normalization, useful for perturbation theory, can be obtained by rescaling A → gA.
For T a in the defining rep, Tr

(
T aT b

)
= 1

2
δab. The coefficient of δab is called the Dynkin index of

the rep. With this convection for the defining rep, the Dynkin index of other reps is fixed. For
the adjoint, it is N .

It is sometimes convenient to work with a vector form of the gauge index on A and F , instead of
the tensor form. In that case the formulas are

SYM = − 1

4g2

∫
d4x(F a

µνF
aµν) + θ term

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
µ. (1.185)

Gauge transformations act as:

Aµ → ΩAµΩ
−1 + iΩ∂µΩ

−1 Ω : R4 → G. (1.186)

These take

Fµν → ΩFµνΩ
−1 (1.187)

so SYM is invariant. If we add matter, e.g. ∆S =
∫
ψ̄i /Dψ, then the matter fields transform

as

ψ → Dr(Ω)ψ (1.188)

where Dr is a matrix representation.

The electric Wilson line operators furnish a useful class of operators:

U r (xf , xi, P ) ≡ Pei
∫ τf
τi

dτ dx
µ

dτ
Aµ(x(τ))

= Pei
∫ τf
τi

dxµAµ (1.189)

Here Aµ = Aaµ(T
r)a where T is a generator in any irrep r. P denotes the path ordered exponential,
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defined by series expansion, with later operators along the path written to the left:

Pei
∫ τf
τi

dτ dx
µ

dτ
Aµ(x(τ))

≡ 1 +
∞∑
n=1

1

n!
P

n∏
a=1

(

∫ τf

τi

dλa i
dxµ

dτ
(τ = λa)Aµ(τ = λa))

≡ 1 +
∞∑
n=1

(i)n
∫ τf

τi

dλ1

∫ λ1

τi

dλ2· · ·
∫ λn−1

τi

dλn
dxµ

dτ
(τ = λ1)Aµ(τ = λ1) . . .

dxµ

dτ
(τ = λn)Aµ(τ = λn)

(1.190)

Being the exponential map of group generators, the Wilson line is group valued, and can be in
any rep. It can be shown to transform as

U → Dr (Ω (xf ))UD
r
(
Ω† (xi)

)
(1.191)

This makes it clear that we can make two gauge-invariant operators from it: the Wilson loop,

TrrU
r(x, x, P ) (1.192)

and lines truncated by charges,

ψ̄r(xf )U
r(xf , xi, P )ψ

r(xi) (1.193)

where r denotes the irrep.

1.15.1 Euclidean Yang-Mills

We take the Lorentzian signature metric to be ds2 = (dx0)2− (dxi)
2. The Euclidean continuation

is performed as follows (some of this is conventional.) Let x0 → −ix̂0 with real x̂0. Then ds2 →
(dx̂0)2 + (dx̂i)

2, and the measure d4x→ −id4x̂.

Gauge field. Aµdx
µ = A0dx

0+Aidx
i → −iA0dx̂

0+Aidx
i, so we define the Euclidean continuation

of the gauge fields A0 → iÂ0 with real Â0, and Ai → Âi. Then the components of the Euclidean
one-form field Âµdx̂

µ are real.

Covariant derivative. D0 = ∂0+igA0 → i∂̂0−gÂ0 = iD̂0, and Di = ∂i+igAi → ∂̂i+igÂi = D̂i.
Thus D2 = D2

0 −D2
i → −D̂2 = −(D̂2

0 + D̂2
i ).

Field strength tensor. F0i → i∂̂0Âi − i∂̂iÂ0 − i[iÂ0, Âi] = iF̂0i, Fij → F̂ij. So FµνF
µν =

−F 2
0i + F 2

ij → F̂ 2
0i + F̂ 2

ij = F̂µνF̂
µν .

Dual field strength tensor. The dual is defined as F̃µν = 1
2
ϵµνρσF

ρσ. If ϵ0123 = 1, then

F̃01 = F 23 = F23 and F̃23 = F 01 = −F01, etc. So F̃01 → ˆ̃F 01 and F̃23 → i ˆ̃F 23. Therefore

F µνF̃µν → iF̂ µν ˆ̃F µν .
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Action.

iS = i

(
− 1

2g2

∫
d4xTr(F 2) +

θ

16π2

∫
d4xTr(FF̃ )

)
→ − 1

2g2

∫
d4x̂Tr(F̂ 2) + i

θ

16π2

∫
d4x̂Tr(F̂ ˆ̃F )

≡ −Ŝ (1.194)

(Whenever it is unspecified the trace is assumed to be in the fundamental representation.) For
brevity, when it is clear that we are working in Euclidean signature, we will drop the hats on
Euclidean coordinates and fields. To summarize, the Euclidean action of pure YM is

S =
1

2g2

∫
d4xTr(F 2)− i θ

16π2

∫
d4xTr(FF̃ ). (1.195)

where the fields are all real and index contractions are performed with the four dimensional Eu-
clidean metric. Note that the kinetic term is positive-definite, but the θ-term is imaginary.
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Chapter 2

EFT

In the last chapter, we covered:

• Scaling and changing the renormalization scale with RG

• Renormalization with higher-dimension operators. Any local QFT is predictive, not just the
renormalizable ones.

• Features of mass independent vs mass dependent schemes

Where do higher-dimension operators came from? Why are most QFTS in elementary particle
physics renormalizable? (QED, QCD, Electroweak theory...) Examples of cases where higher-
dimension operators involved:

• GFψµψ̄eψνeψ̄νµ dimension 6 Fermi theory

• π0

fπ
F µνF ρσϵµνρσ dimension 5 pion decay

• 1
M
HψLHψL dimension 5 neutrino mass

We will now introduce EFT and this will be clarified.
EFT: a Lagrangian theory containing

• All dynamical degrees of freedom light compared to a scale M

• All terms in L consistent with the prescribed symmetries, including higher-dimension oper-
ators with appropriate powers of M

Weinberg: such an L can describe the most general S-matrix for E < M . EFT is an organizational
tool: tells you

• What sorts of interactions are possible

• How they depend on energy

This is a general “bottom up” view. Renormalization ⇒ how to power count in full QFT, how to
obtain predictions to fixed accuracy E. Operators of dimension k+4 contribute in the semiclassical
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limit as (E/M)k. So if we demand

(E/M)kϵ = ϵ⇒ kϵ ≃
log(ϵ)

log(E/M)
.

kE −→ 0 as E/M → 0 : Renormalizable theories obtained

BUT: kE −→∞ as E/M → 1: sign that new physics needed. What is it?

What is missing from EFT is heavy particles. Turn the question around; how to go from a UV
theory with both heavy and light fields, to an EFT, just in terms of the light fields? This is “top
down EFT.” The procedure is conceptually and practically useful.

2.1 Matching, Decoupling, and Integrating Out

Given a UV theory of some light degrees of freedom ψL and some heavy degrees of freedom ϕH ,
how do we produce an effective Lagrangian Leff [ϕL]?

As with many techniques in physics, the terminology has grown somewhat diffuse over time.
Informally the procedure is variously called “matching,” or “integrating out” or “decoupling” the
heavy fields. Somewhat more precisely, integrating out refers to doing a part of the path integral,
similar to what we did in our Wilsonian treatment of renormalization. Given∫

DϕLDϕHe
i
∫
d4xL[ϕL,ϕH ] (2.1)

we do the path integral over all momentum shells for ϕH , and over ϕL modes with k2 ≳ m2
H .

For a simple example, let us consider doing the path integral in the leading-order saddle point
approximation (Euclidean) or stationary phase approximation (Lorentzian). This will be a valid
procedure at weak coupling. Generally we can find a saddle point of low Euclidean action where
ϕH is constant in spacetime, i.e., we look for a constant solution to the equation of motion,

∂V/∂ϕH = 0. (2.2)

Suppose V admits a Taylor series expansion in the fields, which to quadratic order takes the
form

V =
1

2
m2
Lϕ

2
L +

1

2
m2
Hϕ

2
H +∆2ϕLϕH + . . . (2.3)

Then

∂V/∂ϕH = m2
HϕH +∆2ϕL = 0

⇒ϕH = −ϕL∆2/m2
H

Reinsert into L: Veff [ϕL] =
1

2
(m2

L −
∆4

m2
H︸ ︷︷ ︸

m̃2
L

)ϕ2
L

⇒Leff [ϕL] =
1

2
(∂ϕL)

2 − 1

2
m̃2
Lϕ

2
L +O

(
∂2/m2

H

)
. (2.4)
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We can do a little bit better if we allow some backreaction: long-wavelength disturbances in ϕL
will induce disturbances in ϕH , so we could allow for this in the saddle-point approximation by
using the full equation of motion:

□ϕH = −∂V/∂ϕ ⇒
(
p2 −m2

H

)
ϕ̃H = ∆2ϕ̃L

⇒ ϕ̃H = − ∆2

m2
H

ϕ̃L

(
1 +

p2

p2H
+ · · ·

)
. (2.5)

which we can then insert to get higher derivative terms in the effective Lagrangian.

This is a useful technique in simple, weakly coupled cases where leading order (tree level accuracy)
is good enough. It is exactly like Born-Oppenheimer in quantum mechanics: you solve for the
“fast modes” (ϕH , or the electron) in the stationary background of the “slow modes” (ϕL, or the
molecule) to get an effective theory of the latter.

We can increase the precision by “matching.” Given L(ϕL, ϕH) and heavy scale mH ,

• write general Leff (ϕL) including higher dimension operators consistent with the symmetries

• fix the couplings in Leff by requiring ⟨ϕL · · ·ϕL⟩L = ⟨ϕL · · ·ϕL⟩Leff for momenta p≪ mH

Again this very similar to what we did in our Wilsonian treatment of renormalization, but we will
use it in the standard continuum renormalization approach, with mass-independent schemes.

2.1.1 Example 1: the Fermi electroweak theory

One of the earliest examples of an EFT was introduced by Fermi to model muon decay. In the
standard model, muon decay is governed by the charged current interactions,

L =
e√

2 sin θW

(
W+µJ+

µ +W−µJ−
µ

)
J+
µ = ν̄eLγ

µeL + ν̄µLγ
µµL + (quarks, tau)

J−
µ = ēLγ

µνeL + µ̄Lγ
µνµL + (. . . ), (2.6)

Here e/ sin θW is a coupling,W± are heavy charged spin-1 gauge bosons, νe,µ, e, and µ are light lep-
tons described by Dirac fermions, and νL = 1

2
(1− γ5) ν projects out LH Weyl components.

This interaction gives rise to tree-level scattering amplitudes of the form

∼ (ēLγ
µνeL + µ̄Lγ

µνµL)

(
ie√

2 sin θW

)2 i
(
gµν − pµpν

m2
W

)
p2 −m2

W

(ν̄eLγνeL + ν̄µLγνµL)

(2.7)

and similar diagrams for the decay µ → νµeν̄e. Now mµ ≃ 105 MeV is about a thousand times
lighter than the 80 GeV W -boson, and the electron and neutrinos are even lighter than the muon.
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So at center of mass energies
√
s≪ mW , we should be able to write a theory of lepton scattering

and decay that just includes µ, e, νµ,e, with no W .

What interactions do we need? The diagram above tells us we need

.

We can trivially read off the effective Lagrangian, for p2 ≪ m2
W ,

Leff =
e2

2 sin2 θWm2
W

(ēLγ
µνeL + µ̄Lγ

µνµL)
2 +O(∂2/m2

W ) (2.8)

At low energies the leading term is a dimension 6 operator with no derivatives. Derivative correc-
tions are highly suppressed.

Fermi’s version had an undetermined coefficient that one could fit from measurements of the
muon lifetime. It is now called the Fermi constant, GF , and is related to the electroweak theory
parameters by the matching procedure above. Including conventional numerical factors, it is

GF =

√
2e2

8 sin2 θWm2
W

. (2.9)

In the Standard Model, GF = 1/(2
√
2v2), where v = 174 GeV is the Higgs vev. Muon decay is

still the best way to measure this parameter, despite taking place three orders of magnitude lower
in energy..

Similarly, integrating out the W produces a 4-quark charged current effective Lagrangian. This
effective Lagrangian describes various flavor-changing processes, for example, the operators that
we encountered in our discussion of ∆S = 1 processes, cf. Eq (1.96). These were generated by
matching the diagram

.

2.1.2 Example 2: Other 4-Fermi tensor structures

Now let’s look at a 4-Fermi operator generated by scalar couplings. We start from the La-
grangian:

L = Lkinetic + yϕψ̄ψ +
1

2
m2
ϕϕ

2 (2.10)
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Here ψ is light and ϕ is heavy. What L describes low-energy ψ interactions?

Leff = ψ̄ /∂ψ +mψψ̄ψ +
λ1
m2
ϕ

(ψ̄ψ)2 +
λ2
m2
ϕ

(ψ̄γµψ)
(
ψ̄γµψ

)
+ . . . (2.11)

Consider at p2 ≪ m2
ϕ in L and Leff .

From L: + + higher order.

From Leff : + + . . . .

At tree level, the matrix elements are of the form

ML ∼ (ūv)
i(iy)2

s−mϕ2
(v̄u) + (s↔ u) + . . .

MLeff ∼ (ūv)
iλ1
mϕ2

(v̄u) + (ūγνv)
iλ2
mϕ2

(v̄γµu) + . . . . (2.12)

For s, u ≪ m2
ϕ we see that matching requires λ1 = y2, λ2 = 0. Leff is another example of a

4-Fermi theory.
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There are two types of corrections. First, as we noted in the electroweak theory, matching con-
tributions of order (external momenta/mϕ)

n requires introducing higher-derivative operators into
Leff . Second, when we include loops of the heavy field ϕ, the matching can receive corrections
in powers of y. These corrections can be minimized, and often neglected in first approximation,
by judicious use of the RG. Consider the loop diagram drawn above. It shifts the four-point
amplitude to something of the form

ML ∼ (ūv)
i(iy)2

s−mϕ2

[
1 + c

y2

16π2
log(µ/mϕ)

]
(v̄u) + (s↔ u) + . . . . (2.13)

Above we found that tree level matching sets λ1 = y2, but it doesn’t specify the renormalization
scale at which this relation holds. We see that the optimal choice is µ = mϕ: the loop corrections
involving the heavy field are minimized (because large logs are resummed). We “integrate out
heavy fields at their thresholds.”

2.1.3 Match and Run EFT

These examples were simple toy models. They were of conceptual value, particular to understand
where HDOs might “come from,” if you don’t know L, as Fermi didn’t.

But why bother with Leff if you do know L? It turns out to be very convenient for doing precise
computations, using RG+matching. Easier than using full L.

The typical structure of a match-and-run computation uses the lessons we’ve learned in our study
of renormalization and RG. Here is the basic framework which governs a very wide range of EFT
applications:

L(ϕL, ϕH)
⇓ RG evolve L

µ = mH match: tweak coeffs in Leff (ϕL)
⇓ RG evolve Leff

µ ≃ E

Mass independent schemes: can match anywhere. Higher-dimension operators only contribute to
the β functions of lower-dimension operators by positive powers of m/mH . µ = mH especially
convenient (no large logs).

Mass dependent schemes: can only match at µ < MH , because higher dimension operators con-
tribute to the β functions of lower dimension operators as positive powers of µ/mH , which is
uncontrolled as µ → mH . This is inconvenient and misses the advantage of large log resumma-
tion.

⇒ DR+MS is much more convenient for this type of computation. It also resums “infrared logs”
that are difficult to capture in the full theory, as the next example illustrates.
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2.1.4 Example 3: QED

In our previous examples, we carried out the first two steps in the match-and-run flowchart above.
The chart involves two periods of RG evolution, in two different theories: the UV theory, and the
effective theory. Let’s do one more example that illustrates what’s happening in the second period
of RG evolution.

Suppose we measure the electromagnetic coupling e by scattering positrons, e+e+ → e+e+, at mo-

mentum transfers of about 500 MeV. The light particles are e±, µ±. From

we obtain e2(µ0 ∼ 500MeV).

Now suppose we want to know how e+e+ scattering behaves at 10 MeV. Here the only light particle
is e±. If we use our MS β function and run e down to 10 MeV in the e±µ± theory, there will still
be large 1-loop corrections from

∼ e4 log(mµ/E)

This is a general problem when attempting to resum logs by choosing an appropriate renormaliza-
tion scale: what if there is a large hierarchy of scales? (This is only a problem for mass-independent
schemes, which do not automatically implement the decoupling theorem, but we have seen these
are very useful for simplifying the RG and expanding the validity of the perturbative expansion.)
To address the problem, as in the heavy-scalar-light-fermion example, we use a careful choice of
matching scale: we match onto a new EFT at each heavy-particle mass threshold.

In this QED example, matching onto an e± EFT is easy: we just delete the muon from the theory!
No tree level modifications to the couplings are needed, because all electromagnetic couplings
involve zero or two muons. (There are 1-loop effects, but by matching at µ = mµ, these are small,
as in the heavy-scalar-light-fermion example.)

So what changes in the computation? The electromagnetic β function! The second step of RG
evolution, in the e± EFT, evolves the coupling more slowly:
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L : βe =
e3

12π2
× 2

Leff : βe =
e3

12π2
× 1 (2.14)

The factor of 2 in the L theory comes from the electron and the muon loops. It is reduced to a
factor of 1 in the Leff theory, which contains only the electron. The coupling is continuous at the
muon threshold, but the β function is not.

RG1: e(mµ±) =
e2 (µ0)

1 + e2(µ0)
6π2 log

(
µ0
mµ

)
Match: eEFT(mµ±) = e(mµ±)

RG2: eEFT(10 MeV) =
e2(mµ±)

1 +
e2(mµ± )

12π2 log
(

mµ±

10 MeV

) (2.15)

Using eEFT (10 MeV), we can capture with a tree-level computation both logn
(

500 MeV
10 MeV

)
ultraviolet

logs from the full theory, plus logn
( mµ
10 MeV

)
“infrared logs” or “finite logs” from full theory. This is

a general precision-advantage of using the EFT, instead of the full theory: RG in the EFT can
resum large logs that are not captured by RG in the full theory, in mass-independent
schemes.

We should be a little more precise. One can resum large infrared logs using RG in the full
UV theory by using a mass-dependent scheme, where heavy particles decouple from β-functions
automatically. So if you know the full theory, or want to test a hypothesis for a full theory, why
not just do the low energy computation in that theory? The reason is it is easier in almost all
technical applications. The EFT method breaks the computation into steps in energy scale, and
focuses only on the important degrees of freedom and interactions at each scale.

Here is another example: QED corrections to our previous 4-fermion operator generated in Yukawa
theory.

Say the fermion ψ is charged and we want the low energy cross section for ψψ → ψψ, including
quantum corrections from QED.

Full theory diagrams:1

+ permutations + . . .

1If we work in Landau gauge, the electron self-energy diagram does not generate an anomalous dimension, and
the corresponding diagrams here and in the EFT expansion below can be dropped.
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EFT diagrams:

+ permutations + . . .

The EFT loops renormalize the new 4-fermion coupling λ.

βMS
λ = −3e2λ

8π2
, βMS

e =
e3

12π2
(2.16)

So

dλ

d log µ
= λ

d log e

d log µ

(
− 3

8π2

)(
12π2

)
→ d log λ

d log µ
=
d log e

d log µ
×
(
−9

2

)
→ λ(µ) = λ(µ0)

(
e(µ)

e(µ0)

)− 9
2

. (2.17)

So if we know L at µ0 = mϕ, we can match onto Leff and run to µ≪ mϕ.
This is much easier than computing the full theory diagrams, which include finite large logs,
divergent logs, box diagrams, etc. With the EFT method we miss nonlogarithmic 1-loop terms
(from 1-loop matching) and finite p2/m2

ϕ corrections. We gain e2n logn(p2/m2
ϕ) resummation, and

ease of computation.

2.1.5 Example 4: Strange physics

Actually, we already discussed – out of order – another example of matching and running in an
EFT, the ∆S = 1 and ∆S = 2 4-quark operators in the Fermi electroweak theory. We saw that
the ∆S = 1 operators are generated by tree level matching of diagrams involving W bosons, and
prior to that, we discussed the running of both ∆S = 1 and ∆S = 2 operators in the EFT.

In this last example, we’ll illustrate two more elaborations on matching: (1) one-loop matching,
and (2) of an EFT onto another EFT. We’ll use the ∆S = 2 operator (1.103) of the Fermi theory,
which we repeat here for convenience:

Od̄s
+ =

1

2

(
d̄αγ

µ(1 + γ5)sαd̄βγµ(1 + γ5)sβ + d̄αγ
µ(1 + γ5)sβd̄βγµ(1 + γ5)sα

)
. (2.18)

If mixing with the third generation is neglected, then Od̄s
+ is not generated above the charm

threshold mc. (It can’t be generated by integrating out the top, and the only contribution to the
beta function is Eq. (1.104), which is attached to a flavor structure involving 3rd generation CKM
elements Vts and V

†
dt.)

However, the operator is generated at the charm threshold by matching. In the theory with the
charm quark, there are diagrams:
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Below the charm threshold we have a new EFT with the charm quark removed, and the previous
diagrams must be matched by

Thus the ∆S = 2 effective operator is generated by matching at the charm threshold:

δL = − sin2 θc cos
2 θcm

2
c

G2
F

16π2

[
3

2
h2+ − h+h− +

1

2
h2−

]
Od̄s

+ (2.19)

where θc is the Cabibbo angle, cos θc = Vud and sin θc = Vus, and the ∆S = 1 couplings h± are
renormalized at µ = mc.

This operator has a matrix element ⟨K0|δL|K̄0⟩ which contributes to the off-diagonal element of
the K0−K̄0 mass matrix. This off-diagonal element splits the mass eigenstates. If mc is too large,
the splitting would exceed the tiny observed value ∼ 3.5×10−6 eV. This led to the prediction (Lee
and Gaillard, 1974) that the charm quark should be found at the GeV scale. This was confirmed
with the discovery of a 3.1 GeV cc̄ bound state, the J/ψ meson, in November 1974.

2.1.6 Polemic interlude

DR +MS is easy and convenient. Nonetheless it is non-intuitive (modifies the UV and IR); oc-
casionally misleading (questions of fine-tuning); and probably ill-defined nonperturbatively.

It is a tool, like any regulator/schemee, and must ultimately arrive at the same end, if well-
defined.

Use it when it is the right tool for the job! Perturbation theory in gauge theories, match & run
EFT.

EFT is also much more than a top-down calculational tool, a way to resum large logs, or a
conceptual device. In some cases it is the only quantitative (analytic) theory we have:

• When heavy degrees of freedom are strongly coupled, as in QCD, so that matching is non-
perturbative

• When we don’t know the UV theory, for example when we want to parametrize deviations
from the SM.
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Shortly we will return to “bottom up” EFT. To write the most general Lagrangian, we need to
identify the light degrees of freedom and the symmetries of the dynamics. Often these questions
are related: the symmetries, and their realization, tell us something about what light DOF are
expected.

2.2 Noether’s Theorem

Consideration of the symmetries plays an essential role in effective field theory techniques. So, we
will spend some time reviewing the basics.

There are many “types” of symmetries in QFT:

{exact,approximate}×{continuous,discrete} ×{global,gauge} × {ordinary,generalized}.

We will touch on most at different points in this course, but in this section we focus on ordinary
continuous global symmetries. We begin by reviewing Noether’s Theorem, then discuss sponta-
neous symmetry breaking and the Goldstone theorem, and finally introduce the CCWZ formalism
for writing down an EFT of Nambu-Goldstone bosons.

Noether’s theorem is an important result linking continuous global symmetries (either internal or
spacetime) to conserved currents.

Classically, this link is derived as follows. Denote the set of fields as a vector Φi and the infinitesimal
change in Φi under a transformation ϵδGΦ

i. Here ϵ is an infinitesimal parameter that we allow to
vary over spacetime. If the action is a function of the fields and their gradients, S = S[Φi, ∂µΦ

i],
then the variation is

δS =

∫ (
ϵ

[
δGΦ

i δS

δΦi
+ ∂µδGΦ

i δS

δ∂µΦi

]
+ ∂µϵδGΦ

i δS

δ∂µΦi

)
. (2.20)

At this stage, it is convenient to reorganize δS in slightly different ways depending on the
goal.

First, note that the transformation δGΦ
i is a global symmetry if δS is equal to a boundary term for

constant ϵ. This implies the term in brackets is either zero or a total derivative, ∂µJ µ. (A useful
rule of thumb is that J µ is nonvanishing when the transformations relate fields at different points
in spacetime. Another example is J µ is equal to the chern-simons current in axion electrodynamics
if δGΦ

i is the axion shift symmetry. ) If we perform a global symmetry transformation with non-
constant ϵ (but rapidly vanishing at infinity, so that we can integrate the last term in (2.20) by
parts), then

δS = −
∫
ϵ(x)∂µJ

µ , Jµ ≡ δGΦ
i δS

δ∂µΦi
− J µ . (2.21)

By definition, δS = 0 when the fields satisfy their equations of motion, even for non-constant ϵ.
Therefore, classically, Jµ must be conserved :

∂µJ
µ = 0 . (2.22)
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Below, we will also see that this holds quantum mechanically (up to possible contact terms and
anomalies); the reason is we may vary the generating functional wrt ϵ(x) to get correlators of
∂µJ

µ, and these variations must vanish since ϵ just parametrizes changes of dummy (integration)
variables.

The form of δS in Eq. (2.21) is useful for deriving what the conserved current is, and for obtaining
a generating functional for Jµ correlators without assuming the EOM. However, it cannot tell us
how L changes when the transformation is not an exact symmetry. (Although since we generally
use the EOM, we know it will be some total derivative.)

Alternatively, let us define the current

Kµ = δGΦ
i δS

δ∂µΦi
. (2.23)

Then, without assuming constant ϵ, or that the transformation is a symmetry, we have

δS =

∫ (
ϵδGΦ

i × [EOM ] + ∂µ(ϵK
µ)
)
. (2.24)

If we use the equation of motion and take constant ϵ, this becomes

δS =

∫
ϵ∂µK

µ . (2.25)

The form of δS in Eq. (2.25) is useful for deriving this δL (total derivative), and we see that it is
equal to the conserved current if ∂µJ µ = 0. But Eq. (2.25) cannot be used to derive the conserved
current, because having assumed ϵ = const, we do not need ∂µK

µ = 0. In typical cases with global
symmetries, K = J and neither are exact, so under the transformation the Lagrangian shifts by
+ϵ∂µJ

µ.

The above holds for classical symmetries. In QFT, Noether’s theorem becomes a statement about
correlation functions of the operator ∂µJ

µ. Denote the generating functional of correlation func-
tions as

Z[j] =

∫
DΦ eiS[Φ

i]−i
∫
jiΦi . (2.26)

Let us treat the global symmetry transformation as a change of variables in the path integral.
Since it is only a change of integration variables, the generating functional remains the same. We
assume the measure is invariant (we will discuss anomalies later.) Then, using our previous results
for the variation of the classical action, the path integral takes the form

Z[j] =

∫
DΦ eiS[Φ

i]−i
∫
ϵ∂µJµ−i

∫
jiΦ

i−i
∫
ϵjiδGΦ

i

. (2.27)

The simplest correlation function involving ∂µJ
µ is just

⟨∂µJµ⟩ = i
1

Z

δZ

δϵ

∣∣∣∣∣
ϵ=j=0

= 0 . (2.28)
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More general correlation functions involving ∂µJ
µ and other field insertions have the form

(i)n
1

Z

δ · · · δZ
δj · · · δjδϵ · · · δϵ

∣∣∣∣∣
ϵ=j=0

= ⟨∂µJµ · · · ∂µJµΦi · · ·Φi⟩+ · · · = 0. (2.29)

The first term does not completely vanish, being proportional to “contact terms” which arise from
δ2

δj(x)δϵ(y)

∫
dzϵjδGΦ. ***edited - used to not have the ellipses***

2.2.1 Example: O(N) model

Take a model with N scalar fields and action given by

S =

∫
1

2
(∂µϕ

a)(∂µϕa) + V (ϕaϕa) , a = 1 . . . N . (2.30)

The action is invariant under rotations of ϕa treated as an N -vector. ϕa transforms in the funda-
mental representation of O(N),

ϕa → Ra
b (ϵ)ϕ

a , R = eiϵ
ATA (2.31)

where the (imaginary, N ×N , skew-symmetric) matrices TA generate the group O(N). Infinites-
imally,

ϕa → ϕa + iϵA(TA)abϕ
b . (2.32)

Since the symmetry is internal, the Noether current is just

JA,µ = δϕa
δS

δ∂µϕa
= ϕa(TA)ba∂µϕb . (2.33)

There is one for each generator of rotations.

2.2.2 Example: Shift symmetries

S =

∫
1

2
(∂µθ)(∂

µθ) . (2.34)

This action is invariant under a nonlinear symmetry, a shift θ → θ + ϵf , where f is a parameter
of the theory with the same dimensions of θ. The current is

Jµ = f∂µθ . (2.35)

These types of symmetries and their generalizations play an important role in many EFTs. The
reason is that a shift symmetry can forbid a mass term for a field (or keep it small if the amount
of symmetry breaking is small), so it is a principled way to introduce light fields.
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2.3 Spontaneously Broken Symmetries

Take the O(N) model for N = 2. We can write this in terms of a complex scalar field ϕ by
identifying ϕ1 → Re(ϕ), ϕ2 → Im(ϕ),

S =

∫
|∂µϕ|2 − V (|ϕ|) . (2.36)

Then the action is invariant under U(1) transformations, ϕ→ eiαϕ, and the current is

Jµ = −i(ϕ∗∂µϕ− ϕ∂µϕ∗) . (2.37)

(Note that we have to treat ϕ and ϕ∗ as independent variables to derive this current, but it follows
naturally from working with the real and imaginary components.)

Now let us take a specific form for the potential:

V (ϕ) = m2|ϕ|2 + λ|ϕ|4 . (2.38)

The potential has no impact on the form of the Noether current, regardless of whether it breaks
the symmetry. Furthermore, this potential preserves the symmetry.

The minimum of the potential is ⟨ϕ⟩ = 0 when the parameter m2 > 0. This vacuum transforms
trivially under the U(1) symmetry. When the parameter m2 is negative, however, the U(1) is
spontaneously broken:

⟨|ϕ|2⟩ = −m
2

2λ
≡ v2

2
. (2.39)

The minima of the potential form a continuous circle around the origin in field space, with radius
v/
√
2. Any given point along this circle is not invariant under the U(1); rather, points are taken

into each other by the symmetry transformation.

Let us expand our field in small fluctuations around one point along the trough:

ϕ(x) =
1√
2
(v + δv(x)) eiα(x) (2.40)

where we have introduced real fields δv and α, and α is dimensionless and compact, α = α + 2π.
The action now takes the form

S =

∫
1

2
(∂µδv)

2 +

(
v2

2
+ vδv + (δv2)

)
(∂µα)

2 − λv2(δv)2 + Vint(δv) + V0 (2.41)

where Vint is an interaction potential depending only on δv and V0 is a constant. There are several
things to note. Since λ > 0, the “radial fluctuation” δv is now massive, m2

δv = λv2. The “angular
fluctuation” is massless. Furthermore, it only interacts with itself and δv through derivative
couplings. Let’s look at the current in this new basis:

Jµ = v2∂µα , (2.42)
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exactly the form of a shift symmetry, with f = v2 and θ = α. Indeed, if we started from the
action (2.41), we would have concluded that the theory has a global shift symmetry for α, since
it has only derivative couplings.

It is a more general fact that shift symmetries naturally appear from the spontaneous breaking
of continuous global symmetries. The precise statement is the Goldstone Theorem, which plays a
critical role in EFT. Goldstone Theorem: Spontaneous breaking of a global symmetry implies the
presence of a massless particle with charges matching those of the Noether charge.

We will prove the statement with the classical action, but it can be easily generalized to the full
quantum theory by replacing S[ϕ]→ Γ[ϕ], the generating functional of 1-particle irreducible Green
functions.

Take the field transformation to have the form

Φa → Φa + iϵT ab Φ
b. (2.43)

Then the transformation is a global internal symmetry if

δS

δΦa
T ab Φ

b = 0 . (2.44)

Let us evaluate the functional derivative of this wrt Φc:

δ2S

δΦaδΦc
T ab Φ

b +
δS

δΦa
T ac = 0 . (2.45)

Evaluating this expression on constant fields at the minimum of the potential, Φ0, the first variation
δS/δΦa vanishes. Meanwhile at this point the second variation δ2S/δΦ2 is the scalar mass-squared
matrix. Therefore

(M2)acT
a
b Φ

b
0 = 0 . (2.46)

So either Φ0 = 0 (unbroken symmetry) M2 has a vanishing eigenvalue corresponding to eigenvec-
tor T ab Φ

b
0 (broken symmetry). Furthermore we obtain one such eigenvector for every symmetry

generator such that T ab Φ
b
0 ̸= 0.

The massless states are Nambu-Goldstone bosons (NGBs). (NG fermions are possible with spon-
taneous breaking of supersymmetry.)

2.4 Anomalies

Some familiarity with anomalies and their computation is assumed. This section is meant to serve
as a telegraphic summary of about one percent of the dizzying panoply of anomalies discussed in
the literature and a reference for some formulas. For an explicit computation of a chiral Adler-
Bell-Jackiw (ABJ) anomaly in d = 4, see the appendix to chapter 1. For mixed anomalies in
generalized global symmetries, anomalies in different dimensions, and gravitational anomalies, see
a future version of these notes.
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There are three basic types of anomalies: ‘t Hooft, ABJ, and gauge. They all have to do with the
transformation of the effective action under global symmetries and gauge symmetries, respectively.
Usually, you first meet these anomalies in a QFT class in the context of continuous symmetries
in four dimensions, where they are associated with fermion triangle diagrams with zero, two, and
three external gauge bosons. But they are more general than this, and arise in any dimensions,
with continuous and discrete symmetries, both ordinary and generalized.

Let us start with a general approach for ordinary continuous symmetries. For all symmetries
SA, SB, SC , . . . of the action, we introduce background gauge fields A,B,C, . . . . Here background
means they are not yet integrated over in the path integral. They may be integrated over even-
tually, or not. Let Γ(Aµ, Bµ, . . . ) be the effective action, obtained by path integrating over the
matter fields. It depends on the gauge fields Aµ, Bµ, . . . . The induced currents are the response
of the effective action to changes in the gauge fields:

JµA =
δΓ

δAµ
. (2.47)

An infinitesimal gauge transformation associated with symmetry SA acts on the gauge field as
δΛAµ = DµΛ. Then the variation in the effective action is

δΛΓ ≡ G = Tr

∫
dxDµΛ(x)

δΓ

δAµ(x)
. (2.48)

Here the trace and integral sum over all the degrees of freedom that vary. Integrating by
parts,

G = Tr

∫
dxΛDµJ

µ
A. (2.49)

Then if the current is covariantly conserved, DµJ
µ
A = 0, the effective action is invariant under

symmetry SA. Conversely, when the action is not invariant under SA, the current is not covariantly
conserved.

By explicit computation of the effective action we may obtain expressions for G. Here is a brief
sketch – refer to the appendix of Chapter 1 for a full derivation of the triangle diagram with two
external gauge fields.

• In 4D the anomaly is associated with various triangle diagrams. With three external gauge
boson lines, we have a contribution to Γ involving three gauge fields. These may be different
types of gauge fields, or the same type; let us refer to them all as “A” for brevity. We then
make a gauge variation, in which δA → ∂Λ + O(A) so that G ∼ A2 + O(A3). In fact it is
just part of G ∼

∫
Tr(ΛFF̃ ).

• Another approach is to compute a triangle diagram with only two external gauge field lines
and a current insertion in the fermion loop. This is not computing a term in the effective
action, but rather the variation of the anomaly term with respect to A – it is showing that
J = δΓ/δA ∼ AF . We can contract J with DΛ and integrate it to make G, and with
integration by parts we again find G ∼

∫
Tr(ΛFF̃ ).
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• As alluded to above, many of these manipulations can be carried out at leading order in
fields. E.g., we can linearize the YM field strength to F = dA. The triangle diagram is
the lowest-order contribution to the anomaly in this sense. There are diagrams with more
external gauge bosons that build up the nonlinear terms in the F ’s.

The upshot is that in four dimensions, with ordinary continuous symmetries, one finds that the
divergence of a current Jµ associated with chiral symmetry SA may be nonzero in the presence of
background fields:

∂µJ
µ = c

g2

8π2
Tr(FF̃ ) (or c

g2

8π2
FF̃ if F is abelian.) (2.50)

c is a constant that depends on the multiplicities and representations of the fermions in the loop,
and g and F are the coupling and field strength associated with the background fields. In general,
Jµ may couple to a background gauge field A, and F may be associated with a different gauge field
F = dB+ . . . , or the same gauge field F = dA+ . . . .2 The three types of anomalies correspond to
whether A and/or B are dynamical – whether they are path-integrated over to obtain the partition
function or correlation functions.

2.4.1 Gauge anomalies

Here both A and B are path-integrated over. This is a significant problem. The effective action
is not gauge invariant. Gauge anomalies can imply a loss of unitarity. One way to see it is that
they are couplings of the longitudinal gauge fields to transverse modes, and so there can be a
longitudinal pole in the 4-point function of transverse gauge fields. Diagrammatically this is two
triangle diagrams attached to each other:

Usually we just demand that all gauge anomalies cancel. This is sufficient, but slightly more than
necessary – it is possible to concoct EFTs where there is a gauge anomaly that is fixed up in the
UV. We will not discuss this case further, but see “Gauge anomalies in an effective field theory”
(Preskill 1990) for a precise discussion.

Take the case where A and B are the same gauge field and the fermions are in representation r
(which may not be irreducible). This is the basic anomaly of a gauge theory. The full structure
of the anomaly equation is

∂µJ
µa =

g2

16π2
AabcF µνbF̃ c

µν (2.51)

2Also, if F is associated with an Abelian gauge field, then it is gauge invariant by itself, and we can have objects
like FF̃ ′, where F ′ is the field strength associated with a third gauge field F = dC+. . . . This is not gauge invariant,
and therefore does not arise, if SB is nonabelian.
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where

Aabc ≡ Tr(tar{tbr, tcr}) (2.52)

and tar are the generators in representation r. Diagrammatically, the anticommutator appears due
to addition of the crossed diagram.

The statement that a gauge theory is “anomaly free” refers to the vanishing of the anomaly
coefficientAabc. This is automatic for real and pseudoreal representations, where r is related to r̄ by
a unitary transformation, so tar̄ = −ta∗r = −taTr = UtarU

†. Then sinceAabc is invariant under unitary
transformations we can write Aabc = Tr(tar̄{tbr̄, tcr̄}) = −Tr(taTr {tbTr , tcTr }) = −Tr({tcr, tbr}tar) =
−Aabc, so Aabc = 0.

A “vectorlike” gauge theory is one in which all irreps appear together with their conjugates – all
fermions are Dirac – and so the total representation r is real. Therefore all the gauge anomalies
cancel in vectorlike gauge theories. Likewise they cancel in theories where the fermionic matter is
in a real irrep like the adjoint.

It is also interesting to consider chiral gauge theories, where anomaly cancellation demands a
more intricate matter content. The standard example of an anomaly free chiral gauge theory is
an SU(N) gauge theory with one left-handed Weyl fermion in the symmetric (antisymmetric)
two-index tensor representation and N + 4 (N − 4) left-handed Weyl fermions.3

2.4.2 ABJ anomalies

Here A is not path integrated over – J is a global current for symmetry SA – but B is path
integrated over, so symmetry SB is gauged. This means J is not actually conserved, and correlation
functions of ∂µJ

µ do not vanish, if there are any configurations of B such that Tr(FF̃ ) ̸= 0. We
will discuss examples of such fields later. The basic result to remember is that the symmetry
associated with A has been explicitly broken by the gauging of B.

Let the generators associated with the fermion representationR under SA be T iR, and the generators
associated the fermion representation with SB be tar . Then the anomaly equation is

∂µJ
µi =

g2

16π2
AibcF µνbF̃ c

µν

Aibc = Tr(T iR{tbr, tcr}) (2.53)

This goofy but standard notation for A has an implied tensor product, so it is really

Aibc = 2Tr(T iR)Tr(t
b
rt
c
r) = 2Tr(T iR)I(r)δbc (2.54)

3In SU(N), the generators in the fundamental representation have anticommutator {ta, tb} = 1
N δab + dabctc. It

turns out dabc is the unique symmetric invariant tensor, so that Aabc = 1
2A(r)dabc. Here A(r) is called the anomaly

coefficient of the representation r and it can be looked up in tables. The 1/2 is a conventional normalization.
A(r) = ±1 for the fundamental/antifundamental and A(r) = N ± 4 for the symmetric (+) and antisymmetric (−)
two-index tensor irreps.
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where I(r) is called the Dynkin index, and can be looked up in tables. (It is fairly but not
completely standard to take the normalization I(r) = 1/2 for the fundamental representation;
then the adjoint representation for SU(N) has I(A) = N , etc.) The combination

2Tr(T iR)I(r) (2.55)

is called the anomaly coefficient. If SA is some global chiral SU(n) symmetry, then the generators
are traceless, and Aibc = 0.

More commonly SA is a global chiral abelian symmetry, and so Tr(T iR) sums over the charges. For
an abelian chiral symmetry (SA) acting on Nf Dirac flavors in the fundamental representation of
an SU(N) gauge symmetry (SB), 2Tr(T

i
R)I(r) = Tr(T iR) = qNf , where q is the charge under SA.

So in this case

∂µJ
µ = qNf

g2

16π2
F µνbF̃ b

µν (2.56)

For an abelian chiral symmetry (SA) acting on Nf Dirac flavors with charge Q under an abelian
gauge symmetry (SB), the Dynkin index is replaced by Q2. So in this case

∂µJ
µ = qQ2Nf

g2

8π2
F µνF̃µν (2.57)

Finally, sometimes it is convenient to work with Majorana or Weyl fermions, treating them as
separate flavors. In this case the anomaly coefficient is defined as Tr(T iR)I(r), and the trace runs
over all Majorana or Weyl species.

2.4.3 ‘t Hooft anomalies

Here neither A nor B is path integrated over. If we set the background gauge fields to zero, we
find the A-current is conserved, ∂µJ

µ. So ‘t Hooft anomalies do not indicate a breaking of any
symmetry. Instead, they are a contribution to the correlation function:

⟨(∂µJµA)(x)J
ν
B(y)J

ρ
B(z)⟩. (2.58)

For separated x, y, z this vanishes, but in general it can have contact terms when y and/or z are
coincident with x. This doesn’t indicate a breaking of the symmetries, because at coincident points
we no longer have the ∂µJ

µ operator in the correlator, we have some composite operator.

‘t Hooft anomalies are related to ABJ anomalies by the gauging of B. If we gauge B, or if we
simply couple the system to background B fields, the ‘t Hooft anomaly becomes Eq. (2.53). We can
define the ‘t Hooft anomaly coefficient for two different symmetries SA and SB by Eq. (2.54),(2.55).
Similarly we can define the ‘t Hooft anomaly coefficient for a single symmetry SA (with itself) by
Eq. (2.52).

“‘t Hooft anomaly matching” is a powerful constraint on EFTs. It says that ‘t Hooft anomalies
have to be present at all scales. ‘t Hooft’s argument is simple: if you have an anomaly in the
form of a contact term contribution to (2.58) in the UV, you can weakly gauge the symmetries

74



by coupling them with some couplings g to gauge fields, and add light spectator fermions to make
the new gauge symmetries suitably anomaly free. Gauge anomaly cancellation must continue to
hold at lower scales for unitarity of the EFT. But the contributions of the spectator fermions to
the anomaly are independent from the contribution from the original theory – just the triangle
diagram – at least as long as the gauge couplings of the symmetries remain weak. Then we may
say that even if the original degrees of freedom have rearranged themselves (e.g. by spontaneous
symmetry breaking or some strong dynamics), the EFT without the spectators and vanishing g
has the same ‘t Hooft anomaly.

Note that this argument does not require arbitrarily weak couplings for the symmetries participat-
ing in the anomaly. It really just requires that the spectator fermions remain good, light degrees of
freedom – they shouldn’t get bound up into massive composites by some confining dynamics, for
example. So we don’t have to take g → 0 at the end, and the argument applies even for ABJ-type
anomalies, where some of the gauge fields are dynamical.

2.4.4 Example: Peccei-Quinn symmetry

Consider the model

L = −1

4
FµνF

µν − 1

4
(Ga

µνG
µνa) + |∂µϕ|2 + iq† /Dq + iq̄† /Dq̄ − (y(ϕ)q̄q + cc)− V (|ϕ|). (2.59)

The model contains an abelian gauge theory (“QED”) with field strength F and a nonabelian
gauge theory (“QCD”) with field strength G. q, q̄ are left-handed Weyl fermions carrying charge
±Q under QED and transforming in complex representations r, r̄ of QCD. /Dq = iσ̄µ(∂µ+ieQAµ+
ig(Tr)

a
ijA

a
µ and /Dq̄ = iσ̄µ(∂µ − ieQAµ + ig(Tr̄)

a
ijA

a
µ. ϕ is a complex scalar field. There is a chiral

“Peccei-Quinn” (PQ) symmetry,

q → eiαq q̄ → eiαq̄ ϕ→ e−2iαϕ. (2.60)

This symmetry has an ABJ anomaly with both QED and QCD:

∂µJ
µ
PQ = c

e2

8π2
FµνF̃

µν +
g2

16π2
Ga
µνG̃

µνa (2.61)

where the QED anomaly coefficient is

c = q dim(r) (2.62)

Now let us give ϕ has a Higgs-like potential, e.g. V (ϕ) = 1
4
λ (|ϕ|2 − f 2)

2
, so that the chiral

symmetry is spontaneously broken with scale f . The fermions and the scalar radial mode get
large masses from ⟨ϕ⟩,

mQ = yf, m2
ϕ = λf 2 (2.63)

We can integrate them out and write an EFT for the low energy degree of freedom,

ϕ→ feia(x)/f , (2.64)
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where a(x) is an NBG.

If g(f) and e(f) are both small, then we can treat the gauge fields as backgrounds when we
integrate out the matter fields. Then both QED and QCD are weakly coupled at the matching
scale, and we need to match the anomalies. How does it happen?

In general, anomaly matching requires light degrees of freedom in the EFT. Massless composite
fermions could do the trick, via similar triangle diagrams, but we don’t have any of those in this
weakly-coupled theory. Instead, we have a Goldstone boson. In fact, it matches the anomaly
through a dimension-5 effective coupling, generated by the diagram:

Including the effective couplings through dimension 5, the EFT is

Leff = −
1

4
FµνF

µν − 1

4
Ga
µνG

µνa + (∂µa)
2 − c e2

8π2f
aFµνF̃

µν − g2

16π2f
aGa

µνG̃
µνa (2.65)

In the UV theory, the PQ symmetry acts on ϕ as ϕ → e−2iαϕ, which is the same as saying it
acts as a shift symmetry on the Goldstone, a/f → a/f − 2α. In the EFT, the classical current
associated with the shift symmetry is

Jµ = −2f∂µa. (2.66)

The anomalous divergence is

∂µJ
µ = −2f□a = c

e2

8π2f
aFµνF̃

µν − g2

16π2f
aGa

µνG̃
µνa. (2.67)

So we see that the EFT has correctly matched the anomaly through the Goldstone couplings. We
could also have read off ∂µJ

µ directly from the shift of the dimension-5 terms under a→ a− 2αf ,
using the relationship between the divergence and the shift of the effective action under the
symmetry transformation, Eq. (2.49).

Further comments:

• Fermions only contribute to an anomaly when their mass term is forbidden by the symmetry.
Otherwise Pauli Villars can be used to regulate without breaking the symmetry. That is why
anomalies are associated with chiral symmetries. Note, however, that the chiral symmetry
can still be explicitly broken by a mass term, and the fermions can contribute to the anomaly
in the approximate symmetry.

• Chiral anomalies are not the only type of anomalies and the spectator fermion technique
is not the only way to cancel gauge anomalies in ‘t Hooft’s argument. Another useful
technique is allowing one’s spacetime to be a boundary or codimension two surface in a
higher dimensional spacetime. We will discuss this later.
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• The term “trace anomaly” can refer to either an ABJ or a ‘t Hooft anomaly, of different
types. The variation of the action with respect to the metric is the (Hilbert) stress tensor,
and so the variation with respect to the conformal factor of the metric is the trace of the
stress tensor. In this way the trace of the stress tensor is found to be the divergence of the
dilatation current. The trace of the stress tensor in a classically scale-invariant QFT in flat
space can contain (1) dimension-4 combinations of background gauge fields, which turn out
to be of the form a(Weyl)+c(Euler), and (2) dimension-4 combinations of dynamical gauge
fields (like F 2, e.g. the operator associated with the Yang Mills beta function.) The former
is a ‘t Hooft anomaly where the background gauge fields are gravitational. The latter is an
ABJ anomaly.

2.5 The CCWZ prescription

Coleman, Callan, Wess, and Zumino gave a prescription for how to parametrize the fields in a
theory with spontaneous symmetry breaking in order to separate out the NGB degrees of freedom
from the rest. This will be a little abstract, but the technique is very useful, and we will see a
concrete example of it later when we study chiral symmetry breaking and pion physics in QCD.
It is also a vehicle to introduce gauge symmetry, which we will also study in future lectures.

Let the fields be ϕi. Let the path integral action and measure be invariant under a Lie group G
that is spontaneously broken to a subgroup H by the vacuum. Let T a be a set of generators of H
(“preserved generators”) and Xb be a set generators mutually orthogonal to the T a that together
with T a generate G (“broken generators.”) Then CCWZ showed that the πi can be parametrized
as

ϕi = Σi
j(x)φ

j(x) , Σ(x) ≡ eiπ·X , (2.68)

where π(x) are the NG fields (note that there is one for each broken generator X), and φ trans-
forms linearly under H, φ → D(h)φ if ϕ is in representation D. There is some freedom in the
decomposition (2.68), and it is convenient to choose φ so that

φ†
i (X

a)ij⟨ϕj⟩ = 0 . (2.69)

This condition just says φ is orthogonal to the broken directions of field space, or the vacuum
manifold, in which our NG fluctuations will lie.

It is useful to know how the fields in the new basis transform under the original global symmetry
group G. First consider a transformation by h ∈ H, ϕ→ D(h)ϕ. Then

Σφ→ D(h)ΣD(h−1)D(h)φ = Σ′φ′ , (2.70)

where

Σ′ = D(h)ΣD(h−1) . (2.71)

Therefore, if ϕ transforms in the fundamental representation of G, Σ transforms in the adjoint of
H. Let us verify that Σ′ may still be written as eiπ

′·X , for some transformed π fields. Using the
properties of the adjoint and the exponential maps, we can write

Σ′ = ei[D(h)XaD(h)−1]πa . (2.72)
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Furthermore the generators of G transform in the adjoint representation of G, so we can write

D(h)XaD(h)−1 =Ma
b (h)X

b +Na
b (h)T

b (2.73)

for some M and N . But since the T generators transform in the adjoint representation of H, and
the T and X can be taken to be mutually orthogonal,

N ∼ Tr[T bD(h)XaD(h)−1] = (Radj)
b
c(h)Tr[T

cXa] = 0 . (2.74)

Thus M = (Radj) and the π fields transform in the adjoint representation of H.

Now let us work out the transformations under a more general global transformation g ∈ G,
which can be written as g = eiα

aXa
eiβ

bT b for elements of g continuously connected to the identity.
Then

Σφ→ gΣφ = eiα
aXa

eiβ
bT beiπ

c(x)Xc

φ , (2.75)

and since eiα
aXa

eiβ
bT beiπ

c(x)Xc ∈ G, it can be rewritten

gΣφ = ei(π
′)c(x)Xc

eiγ
bT bφ

≡ Σ′φ′ . (2.76)

Here γ = γ(g,Σ) specifies an element of H that should be inserted so that Σ′ = gΣh(γ(g,Σ))−1

can still be written as Σ′ = eiπ
′·X for some transformed π fields. In general γ is nontrivial.

Thus far we have given a general discussion of the fields and their transformation laws according
to the CCWZ prescription. Knowing the transformation laws, we can write down the most general
G-invariant interactions, in the spirit of Weinberg’s folk theorem. However, our analysis so far
has been a bit abstract. Moreover in building an EFT the φ degrees of freedom are usually
hierarchically separated from the NGBs, so we would like to keep just the Σ part fluctuating and
set φ to its vev. Let’s look at a concrete example.

2.5.1 Example: O(N) model

We can rewrite the O(N) model lagrangian in the broken phase as

L =
1

2
∂µϕ

i∂µϕi − λ(ϕiϕi − v2)2 . (2.77)

This is an example of what is called for historical reasons a Linear Sigma Model (LSM), because it
exhibits invariance under a linearly realized group of transformations G = O(N), and G is partly
spontaneously broken,

⟨ϕiϕi⟩ = −m
2

2λ
≡ v2

2
. (2.78)

Up to an O(N) rotation, we can take the vacuum to be

⟨ϕ⟩ =


0
·
·
·
0
v

 . (2.79)
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This vacuum is left invariant by transformations of the form

h =

(
h′ 0
0 1

)
(2.80)

with h′ ∈ O(N − 1). Thus the unbroken symmetry is H = O(N − 1) and the pattern of symmetry

breaking is G/H = O(N)/O(N − 1) ≃ SN−1. There are N(N−1)
2
− (N−1)(N−2)

2
= N − 1 broken

generators and massless NGBs, leaving one additional non-NGB degree of freedom, corresponding
to radial fluctuations. The CCWZ prescription is

ϕi = Σφi(x) , Σ = eiπ
a(x)La , φi(x) = (ρ(x) + v))


0
·
·
·
1

 . (2.81)

Inserting into the Lagrangian,

L =
1

2
∂µρ∂

µρ− λ(ρ2 + 2ρv)2 +
1

2
(ρ+ v)2

[
∂µe

−iπa(x)La∂µeiπ
b(x)Lb

]
. (2.82)

(The minus sign in the exponent arises from taking the transpose of L, which is skew-symmetric.)
As in the O(2) example studied previously, the radial fluctuation is a massive field, m2

ρ = 8λv2.
Let us therefore omit it and study only the massless NGB degrees of freedom. This is called the
Nonlinear Sigma Model, or NLSM, because compared to the LSM in (2.77) the G-invariance will
be nonlinearly realized through complicated transformations of the NGBs.

For N = 3, we can visualize the vacuum manifold ⟨ϕiϕi⟩ = v2 as the 2-sphere, so this will be the
target space of the Σ fields. Choosing the vacuum to be ⟨ϕi⟩ = (0, 0, v), only the generator

L3 =

 0 i 0
−i 0 0
0 0 0

 (2.83)

of rotations about the 3 axis (in field space) is unbroken, (L3)
j
i ⟨ϕi⟩ = 0 and H = U(1). The X

generators are thus L1 and L2, and

Σ = ei[L1π1(x)+L2π2(x)] . (2.84)

The adjoint representation of U(1) is trivial, so the π fields do not transform under H. Under a
general O(3) transformation g, ϕ→ gϕ. gΣ does not in general have the form (2.84) for some π′

1,2,
but can be written as

gΣ = Σ′h (2.85)

where Σ′ does have the form (2.84) and h = h(g,Σ). This can be visualized by the parallel
transport of a vector along the surface of a sphere. The object gΣ transports the vector first from
the north pole to a point A and then to a second point B. The result differs from the parallel
transport of the vector directly from the north pole to B, because of curvature (this is curvature
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in field space), but they can be reconciled by first rotating the vector around the north pole axis
(this is h in Eq. 2.85) and then parallel transporting it to B. Thus we take the transformation
law to be

Σ⟨ϕ⟩ →
(
gΣh−1(g,Σ)

)
h(g,Σ)⟨ϕ⟩

=
(
gΣh−1(g,Σ)

)
⟨ϕ⟩

= Σ′⟨ϕ⟩ . (2.86)

In the O(N) model, Σ is an orthogonal matrix, so ΣTΣ = 1 and the only G-invariant operators
must involve derivatives of Σ. The simplest is the 2-derivative operator,

Leff (Σ) =
f 2

2
Tr
(
∂µΣ

T∂µΣ
)
. (2.87)

Comparing with the last term in Eq. (2.82), which is the only one that survives after we set
ρ→ ⟨ρ⟩ = 0, we see that the “UV completion” generates precisely this effective Lagrangian with
f = v.

2.5.2 Spurions

So far we have considered only exact symmetries, but it is extremely useful to be able to accommo-
date small amounts of symmetry breaking into the preceding discussion. We might imagine that if
a global symmetry were broken by a term in the action with a small coefficient, the NGBs would
no longer be massless (thus “pseudo-NGBs”, or PNGBs), but they might still be light compared to
the rest of the DOF. Spurion analysis encodes small symmetry breaking in a systematic way.

Take an action S0[ϕ] symmetric under a transformation ϕ → D(g)ϕ and perturb it by a small
symmetry-violating term,

∆S =

∫
d4xλaOa[ϕ] . (2.88)

Here Oa[ϕ] is a functional of ϕ that transforms as Oa → D̃a
bOa under ϕ→ D(g)ϕ, and the λa are a

set of small coupling constants. However, if we asserted that λ→ D̃−1λ under the transformation,
then ∆S would be invariant. Now, this is only a trick: there is no unitary operator acting on the
Hilbert space that “transforms” the coupling constant λ. However, this observation does show
that whatever we compute in this theory has to be symmetric under the expanded transformation.
λ is called a “spurion” for the broken symmetry, and if it is small, we can reliably compute results
as λ-perturbations around the symmetric theory with λ = 0.

As an example, take the O(2) ≃ U(1) model with a new type of “holomorphic” mass term:

S =

∫
|∂µϕ|2 − λ(|ϕ|2 − v2)2 − {µ2ϕ2 + c.c.} . (2.89)

If µ → 0, this action is invariant under ϕ → eiαϕ. Furthermore, if we promote µ2 to a spurion
transforming as µ2 → e−2iαµ2, the whole action is invariant. Then we predict that

⟨ϕ∗ϕ3⟩ ∝ µ∗2

⟨ϕ∗ϕ5⟩ ∝ µ∗4

(2.90)
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etc.

2.6 QCD and the Chiral Lagrangian

QCD is described by the Lagrangian

LQCD = −1

4
Ga
µνG

aµν + ψ̄ii /Dψi −mijψ̄iψj (2.91)

The 1-loop RGE for the gauge coupling is

∂α−1

∂ log µ
=

b0
2π
, b0 =

11

3
N − 2

3
Nf (2.92)

where Nf is the number of Dirac fermions in the fundamental representation. The Standard Model
has six quarks, so it is appropriate to take Nf = 6 at scales above the top quark mass. Then
b0 = 11−4 = 7, and α−1 decreases linearly as log µ is lowered. At the top (mt ≃ 172GeV), bottom
(mb ≃ 4.5GeV), and charm (mc ≃ 1.2GeV) thresholds, we decouple each of these heavy quarks.
To first approximation, this just means that below each threshold we drop the quark from the
theory and decrement the beta function by Nf → Nf − 1. Finally, around a few hundred MeV
(well above the strange quark mass), the coupling runs strong, and perturbative QCD, as a theory
of weakly coupled quarks and gluons, is no longer a good description of the physics. Empirically,
we observe that strong dynamics at lower energies should be a theory of interacting mesons and
baryons, but we do not know how to analytically integrate out degrees of freedom from QCD to
produce a meson-baryon EFT.

But all is not lost! We can do bottom-up EFT thanks to some further theoretical and empirical
observations:

1. For mij = 0, LQCD has an SU(Nf )L × SU(Nf )R “flavor symmetry.” There are Nf = 3 light
quarks for which m = 0 might be a reasonable first approximation. Let ψi be a Dirac quark
with flavor index i. It will be convenient to swap back and forth between two-component
and four-component fermion notation in what follows. The flavor symmetry acts on the
two-component quark fields as

ψi =

(
ψLi
ψRi

)
−→

(
L̃ij 0

0 R̃ij

)(
ψLj
ψRj

)
(2.93)

and

ψ̄i = (ψ∗
Ri ψ∗

Li) −→
(
ψ∗
Rj ψ∗

Lj

)( R̃†
ji 0

0 L̃†
ji

)
(2.94)

where L̃ and R̃ are Nf × Nf = 3 × 3 special unitary matrices acting on flavor indices. We
can also write them as

L̃ = eiα
a
LT

a

R̃ = eiα
a
RT

a

(2.95)
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where the T a are traceless Hermitian SU(Nf = 3) generators. In the following we will just
set Nf = 3 and it will be clear from context how to generalize it to other choices of Nf . In
terms of four-component quarks, we can also define

L ≡
(
L̃ 0
0 13x3

)
, R ≡

(
13x3 0

0 R̃

)
(2.96)

which can be written in terms of traceless Hermitian generators as

L = eiα
a
LT

a
L R = eiα

a
RT

a
L (2.97)

where

T aL =

(
T a 0
0 0

)
T aR =

(
0 0
0 T a

)
. (2.98)

T aL and T aR span the 2(32−1) = 16-dimensional Lie algebra; a general element is αaLT
a
L+α

a
RT

a
R.

Then under SU(3)L × SU(3)R, the four-component quark transforms as

ψ → LRψ. (2.99)

2. There is a vacuum expectation value for a fermion bilinear which, in some basis, can be
written

〈
ψ̄ψj

〉
∼ Λ3

QCD δij. Historically, this is putting the cart before the horse, but is
easier to take this as a given.

How does ψ̄iψj transform under flavor?

ψ̄iψj = ψ†
LiψRj + cc→ ψ†

LkL̃
†
kiR̃jlψRl + cc (2.100)

so in the special case where L̃ = R̃, 〈
ψ̄iψj

〉
→
〈
ψ̄iψj

〉
(2.101)

because δij is an invariant tensor. From this we conclude that transformations with αaL = αaR
are unbroken by the vacuum state. It is convenient to change the basis of generators so that
some are aligned with the unbroken subgroup. In four-component notation, we write

αaLT
a
L + αbRT

b
R = αaV (T aL + T aR)︸ ︷︷ ︸

≡TaV

+βaXa. (2.102)

There is freedom in the choice of the X generators: they cannot be degenerate with TV , but
they don’t have to be orthogonal.

The T aV generate the unbroken “vector” symmetries (vectors here means the transformations
treat L and R fermion components the same.) The Xa generate the symmetries that are
spontaneously broken by ⟨ψ̄ψ⟩.

Common choices for the Xa:

• Xa = T aL − T aR, “axial” SU(3)A. Here αL = αV +β and αR = αV −β, or equivalently
αV = (αL + αR)/2 and β = (αL − αR)/2.

• Xa = T aL. Here αL = αV +β and αR = αV , or equivalently αV = αR and β = αL−αR.
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2.6.1 CCWZ and the light pseudoscalar mesons

Now we proceed with the CCWZ construction of an EFT for the Goldstone bosons. We take the
light fields to be local fluctuations in the directions of the vacuum manifold, parametrized by the

broken generators acting on a particular (arbitrary) vacuum state. We take
〈
ψLiψ

†
Rj

〉
∝ δij as

the particular state.

Then, as we showed above, the vev transforms under the flavor symmetries as〈
ψiψ

†
Rj

〉
→ L̃il

〈
ψLlψ

†
Rk

〉
R̃kj ∝

(
L̃R̃†

)
ij
. (2.103)

Now restrict to the broken transformations. We’ll start with the second basis. In this basis,
in two-component language, the broken transformations are parameterized by αL = αV + β →
β, αR = αV → 0. So R̃⇒ 13x3 and we write L̃ in a conventional form,

L̃ = e2iπ
aTa/fπ . (2.104)

Here the 2 is conventional, fπ is a new scale to be determined, and we have replaced βa by πa(x),
a Goldstone field of mass dimension one. We define a matrix field

Σ(x) ≡ e2iπ
aTa/fπ (2.105)

which is valued in the SU(3)L × SU(3)R/SU(3)V ≃ SU(3) coset. In four-component nota-
tion,

U ≡ eiπ
aXa/fπ ≡

(
Σ(x) 0
0 13×3

)
(2.106)

and it is convenient to define also check

Ū ≡
(

13×3 0
0 Σ(x)†

)
(2.107)

How does Σ transform under the flavor symmetries? In four-component language, U⟨ψψ̄⟩Ū is a
state on the vacuum manifold. Under a flavor rotation,

U⟨ψψ̄⟩Ū → (LR)U⟨ψψ̄⟩Ū(LR) (2.108)

where LR =

(
R̃† 0

0 L̃†

)
. Perhaps

U ′ ?
= LRU =

(
L̃ 0

0 R̃

)(
Σ 0
0 1

)
=

(
L̃Σ 0

0 R̃

)
. (2.109)

But this is not in the form

(
Σ′ 0
0 1

)
, so we can’t read off a transformed Σ′ from it. To fix this

issue, note that we can insert an element D of the unbroken SU(3)V , since D⟨ψψ̄⟩D̄ = ⟨ψψ̄⟩. So
let’s try

U ′ ?
= LRUD =

(
L̃ΣD 0

0 R̃D

)
(2.110)
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So we see that if we set D = R̃†, we obtain

U ′ =

(
L̃ΣR̃† 0
0 13×3

)
(2.111)

from which we read off the transformation law

Σ′ = L̃ΣR̃†. (2.112)

2.6.2 ξ-basis

What if we took the other basis?

R̃⇒ e−iπ
aTa/fπ ≡ ξ†, L̃⇒ eiπ

aTa/fπ ≡ ξ

U =

(
ξ 0
0 ξ†

)
(2.113)

As before, introducing an extra vector rotation allows us to assign a transformation rule to ξ. U
transforms as

(LR)UD⟨ψψ̄⟩D̄ŪLR (2.114)

where

LRUD =

(
L̃ 0

0 R̃

)(
ξ 0
0 ξ†

)(
D̃ 0

0 D̃

)
(2.115)

So we require

ξ′ = L̃ξD̃ = D̃†ξR̃† (2.116)

which we can regard as an implicit definition of D̃ in terms of L̃, R̃, ξ.

Then

ξ2 → L̃ξD̃D̃†ξR̃† = L̃ξ2R̃† (2.117)

so we may identify a map between the two bases:

Σ = ξ2. (2.118)

2.6.3 2-derivative Lagrangian

The π fields, πaT a ≡ π, describe the light mesons π± (139 MeV), π0 (135 MeV), K0/K̄0 (498
MeV), K± (494 MeV), and η (548 MeV) For fundamental Dynkin index Tr(T aT b) = 1/2δab, the
identification is

π =
1√
2

 π/
√
2 + η/

√
6 π+ K+

π− −π0/
√
2 + η/

√
6 K0

K− K̄0 − 2√
6
η

 (2.119)
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The low energy Leff is the most general Lagrangian describing the spontaneous symmetry break-
ing pattern SU(3) × SU(3) → SU(3). Obviously the “Goldstones” aren’t really massless – the
symmetry is also explicitly broken by the light quark mass matrix.4

Most general term invariant under Σ′ = LΣR† with no derivatives would be

TrΣΣ† . . .ΣΣ† (2.120)

But ΣΣ† = 1, so these are all constants. We knew this - Goldstones are derivatively coupled.

The only 2 derivative term is:

L2 =
f 2
π

4
Tr
(
∂µΣ∂

µΣ†)
= Tr ∂µπ∂

µπ +
1

3f 2
π

Tr [π, ∂µπ]
2 (2.121)

Since TrT aT b = 1
2
δab, the first term gives the canonically normalized kinetic terns

1

2
(∂µπ

a)2 (2.122)

All terms have an even number of π’s - it is a pseudoscalar and parity is conserved.

L2 determines all scattering amplitudes to order p2/f 2
π . π − π scattering can be used to measure

fπ, for example, although there are better ways.

2.6.4 Chiral currents

In response to a symmetry transformation of local infinitesimal parameter ϵ, Noether’s theorem
tells us the change in the action is of the form: δL = ∂µj

µ(x).

For SU(3)L:

Σ→ Σ + iϵaLT
aΣ

⇒ δL =
i

2
f 2
π∂µϵ

a
LTr

(
T aΣ∂µΣ

†)
⇒ jµaL =

i

2
f 2
π Tr

(
T aΣ∂µΣ†) (2.123)

and similarly

jµaR =
i

2
f 2
π Tr

(
T aΣ†∂µΣ

)
. (2.124)

4We will see how to incorporate explicit symmetry breaking. Note that π0, π± are much lighter than the other
mesons. For this reason sometimes the theory is restricted to SU(2)L × SU(2)R/SU(2)V .
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The spontaneously broken axial transformations have current

jµaA = jµaR − j
µa
L = −fπ∂µπa + . . . (2.125)

This is characteristic of spontaneously broken currents and implies the current can create a single
Goldstone boson:

⟨0|jµaA (x)|πb(p)⟩ = ifπp
µδabe−ipx (2.126)

In nature, the jµa current is weakly gauged: jµaL W
a
µ which allows π+ → µ+ν̄ weak decays ∝

⟨0|jµa
∣∣πb〉 ∝ fπ. In practice this is how fπ is determined.

2.6.5 Power Counting

So far, we have discussed how to write the general SU(3)L×SU(3)R-invariant Leff for the NGBs
of SU(3)L× SU(3)R/SU(3)V SSB induced by ⟨ψ̄ψ⟩ in QCD. This is called the chiral Lagrangian,
because the SSB is of chiral symmetries, and describes the low-energy physics of the light mesons
π, k, η. We saw the leading term in the derivative expansion was

L2 =
f 2
π

4
Tr
(
∂µΣ∂

µΣ†)
≃ Tr ∂µπ∂

µπ︸ ︷︷ ︸
kinetic

+
1

3f 2
π

Tr [π, ∂µπ]
2︸ ︷︷ ︸

ππ scattering

+ . . . (2.127)

Next we will discuss power counting and naive dimensional analysis (NDA) for the chiral La-
grangian and try to work out the range of validity of chiral perturbation theory (ChPT).

The chiral Lagrangian is L =
∑

k Lk where k counts derivatives. Now consider a general compli-
cated loop graph
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The amplitude is some integral of the form

A =

∫ (
d4p
)L( 1

p2

)I∏
k

(
pk
)Mk (2.128)

where
L = # loops

I = # internal lines

mk = #k-vertices (vertices containing k derivatives)

So the scaling dimension of the amplitude is

[A] = 4L− 2I +
∑
k

kmk ≡ D. (2.129)

In a mass-independent renormalization scheme, on dimensional grounds, A ∼ pDext×f(pext/fπ.

Now it can be shown that V (ertices)−I(nternal lines)+L(oops) = 1, where V =
∑

kmk. So

D = 2 + 2L+
∑
k

(k − 2)mk (2.130)

eliminating I. L starts at order p2, so all terms in the sum over k are ≥ 0. Therefore, to fixed
order in pext (fixed D), we need only a finite number of the Lk.

Example: to compute to O(p4ext),

4 = 2 + 2L+
∑
k

(k − 2)mk (2.131)

At tree level (L = 0), we have m4 = 1 and mk>4 = 0. At one loop (L = 1), mk>2 = 0. No
contribution from higher loop. ∴ To compute all scattering amplitudes to O(p4ext), we need only
tree diagrams with vertices from L = L2 + L4 , and 1-loop diagrams with vertices from L = L2.
Acts like an ordinary renormalizable theory to fixed order in pext, as discussed previously.

2.6.6 Naive Dimensional Analysis

It turns out the pext expansion is somewhat better than pext/fπ. To get the idea, consider the
2→ 2 scattering to O(p4ext).
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The second diagram is ∫
d4k

(2π)4
k2

f 2
π

k2

f 2
π︸ ︷︷ ︸

vertices

1

k2
1

k2︸ ︷︷ ︸
propagators

≡ I (2.132)

 Recall : L2 = Tr (∂µπ)
2 +

1

3f 2
π

Tr [π, ∂µπ]
2︸ ︷︷ ︸

∼k2/f2π 4-point vertex

+ . . .

 (2.133)

So

I ≃ p4

16π2

1

f 4
π

log µ in DR +MS (2.134)

Meanwhile the tree level piece arises from L4.

L4 ⊃ aTr
[
∂µΣ∂

µΣ†∂νΣ∂
νΣ†]

→ p4ext/f
4
π (4-pion vertices) (2.135)

As usual, tree + loop is µ-independent because of implicit µ-dependence in the coupling a
(RG).

= a
p4ext
f 4
π

+
p4ext

16π2f 4
π

log µ (2.136)

So an O(1) change in µ ⇒ O
(

1
16π2

)
change in a. Generically (meaning for a generic choice of µ,

|a| ≥ |δa| ∼ 1
16ππ2 barring accidental cancellations. Now write L as

f 2

4

[
Tr ∂µΣ∂

µΣ† +
1

Λ2
χ

L4 +
1

Λ4
χ

L6 + . . .

]
(2.137)

Λχ is the typical scale of the effective Lagrangian, namely the derivative expansion is p/Λχ. Since
a ≳ 1

16π2 ,Λχ ≲ 4πfπ, at least for the 2 -derivative term. In fact it is true for all terms, estimated
in a similar way.

It turns out that in QCD, it is a very good rule to set Λχ → 4πfπ, saturating the inequality.
Residual coefficients in L are mostly O(1). Numerically, then, the cutoff is

4πfπ ∼ 1GeV. (2.138)
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This ensures that ChPT works somewhat well for kaons (Mk ∼ 500MeV) and very well for pions
( mπ ∼ 135MeV). If Λχ was fπ ∼ 100MeV, ChPT would not even work for massive pions!

Naive Dimensional Analysis (NDA) is the statement that a generic term in L is of order

f 2
πΛ

2
χ

(
π(x)

fπ

)n(
∂

Λχ

)m
(2.139)

with n pions and m derivatives..

Examples:

f 2Tr ∂µΣ∂
µΣ† −−−−→

kinetic
term

f 2∂2
π2

f 2
→ f 2Λ2

χ

(
∂

Λ2
χ

)2(
π

fπ

)2

(2.140)

Tr ∂µΣ∂
muΣ†∂νΣ∂

νΣ† → f 2
πΛ

2
χ

(
∂

Λχ

)4(
π

fπ

)4

→ c
f 2
π

Λ2
χ

∼ 1/16π2 (2.141)

2.6.7 Explicit chiral symmetry breaking

As we have mentioned, the pions and kaons are massive. How can this be for Goldstone bosons?

The chiral symmetries are not exact - they are explicitly broken by quark masses

L ⊃ −ψ†
LiMijψRj + c.c

M =

 mu

md

ms

 (2.142)

This is invariant if we also transform M as M → LMR†. So Lχ should also be invariant if we
include M and impose this transformation. Then, when we treat M as a constant, the new terms
encode the effects of symmetry breaking.

This is an example of spurion analysis, as discussed previously. Here M is a spurion for explicit
χSB.

This is only useful if M is small, so that we can treat the Lx as an expansion in both ∂/χ and
m/Λχ.

To lowest order,

Lm = µ
f 2
π

2
Tr
(
Σ†M +M †Σ

)
. (2.143)

This is invariant under the simultaneous chiral transformations of Σ and the spurion M . To
understand µ better, note that this term can be thought of as taking LQCD and setting ψ̄ψ to the
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condensate:
mijψ

†
LiψRj + cc −→ mij L̃

†
ki︸︷︷︸

Σ†
ki

⟨ψ†
LkψRℓ⟩︸ ︷︷ ︸

δkℓ|⟨ψ̄ψ⟩|

R̃jl︸︷︷︸
δjℓ

+cc

−→ Tr
(
MΣ† + cc

)
|⟨ψ̄ψ⟩|

so

µf 2
π

2
= |⟨ψ̄ψ⟩|. (2.144)

Non-derivative! So flat directions lifted. Σ = const was the vacuum manifold before introducing
M , now it is only approximately so. Taking M real,

µf 2
π

2
Tr
(
Σ†M + cc

)
≃ const − µf 2

π

2

4πaπb

fπ2
Tr
(
MT aT b

)
+ . . . (2.145)

Linear terms in πa cancel ⇒ ⟨π⟩ = 0, ⟨Σ⟩ = 1.

Gell-Mann matrices:

T 1 =
1

2

 0 1 0
1 0 0
0 0 0

 T 2 =
1

2

 0 −i 0
i 0 0
0 0 0

 T 3 =
1

2

 1 0 0
0 −1 0
0 0 0


︸ ︷︷ ︸

SU(2) subgroup

T 4 =
1

2

 0 0 1
i 0 0
1 0 0

 T 5 =
1

2

 0 0 −i
0 0 0
i 0 0

 T 6 =
1

2


0 0
0 0
0 1
0 0


T 7 =

1

2

 0 0 0
0 0 −i
0 i 0

 T 8 =
1

2
√
3

 1 0 0
0 1 0
0 0 −2


TrTATB =

1

2
δAB

πaT a =
1

2

 π3 + π8/
√
3 π1 − iπ2 π4 − iπ5

π1 + iπ2 −π3 + π8/
√
3 π6 − iπ7

π4 + iπ5 π6 + iπ7 −2π8/
√
3


≡ 1√

2

 π0
√
2
+ η/
√
6 π+ K+

π− −iπ0/
√
2 + η/

√
6 K0

k− K̄0 −2√
6
η

 (2.146)

The full 8× 8 meson mass matrix is a little messy. But the π±, K±, K0, K̄0 do not mix.

M2
π± = µ (mu +md) +

(
∆M2

)
← 1-loop EM correction (2.147)

M2
K± = µ

(
mu +m2

s

)
+
(
∆M2

)
← identical EM corrections (2.148)

M2
K0,K̄0 = µ (m0 +ms) (2.149)
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The π0 and η mix. In the basis π0, η the mass matrix is

µ

(
mu +md

mu−md√
3

mu−md√
3

1
3
(mu +md + 4ms)

)
(2.150)

mu = md is called “isospin breaking.” Isospin = SU(2)V . It is a small effect. The electromagnetic
1-loop corrections are also isospin breaking and of a similar magnitude. These are small effects.
So

m2
π ≃ (mu +md)µ+O(mu −md) (2.151)

m2
η ≃

µ

3
(mu +md + 4ms) (2.152)

We don’t know µ. But it drops out in ratios:

mu

md

=
m2
K+ −m2

K0 + 2m2
π0 −m2

π+

m2
K0 −m2

K+ +m2
π+

≃ 0.55 (2.153)

ms

md

=
m2
K0 +m2

K+ −m2
π+

m2
K0 −m2

K+ +m2
π+

≃ 20.1 (2.154)

and the Gell-Mann Okubo (GMO) formula:

4m2
K0 = 3m2

η +m2
π (2.155)

Empirically, the left-hand side is about 0.99GeV2, and the right-hand side is about 0.92GeV2.

This is leading order in M . Note that m2
π ∝ mquark. So in the chiral expression, since p2 ∼ m2

π,
we should treat m like p2:

L2 ⊃ p2,m (2.156)

L4 ⊃ p4, p2m,m2 (2.157)

Let’s revisit π − π scattering to O(p2): we have

L2 =
f 2
π

4
Tr ∂µΣ∂

µΣ† + µ
f 2
π

2
Tr
(
Σ†M +M †Σ

)
.

We sur the 1
3f2π

Tr [π, ∂µπ]
2 before. Now there is also 2

3
µTr (Mπ4).

One can also develop a formalism for the interactions of NGBs with heavy, quasi-static, on-shell
particles like nucleons.

2.7 The Standard Model as an EFT

The SM is defined as a perturbatively renormalizable QFT. But it can be supplemented by HDOs.
What operators are allowed? What scales should we expect?
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2.7.1 Dimension 5

L5 ⊃
γff ′

MBSM

(ϕLf )(ϕLf ′) + cc (2.158)

where

Lf =

(
νf
l−f

)
f = e, µ, τ SM lepton doublets

ϕ =

(
ϕ+

ϕ0

)
SM Higgs doublet

Here and in the rest of this section we use 2-component fermion notation. In this case, the
SU(2)-invariant contraction is ϕL ≡ ϵabϕaLb.

The SM is invariant under three “lepton number” symmetries,

Lf → e−iαfLf , ēf → eiαf ēf (2.159)

For example, the Higgs coupling is

1

v

 me 0 0
0 mµ 0
0 0 mτ


ff ′

(ϕL)f ēf ′ (2.160)

(Here the SU(2)-invariant contraction is ϕ∗L ≡ δabϕ∗
aLb.)

But L5 breaks these symmetries in general. So lepton number may simply be an “accidental
symmetry” in the SM. Accidental symmetries are symmetries of low-energy EFTs that
are consequence of gauge invariance and renormalizability. Dropping renormalizability,
lepton number it is easily violated by 2 units, but the effect is suppressed by powers of the cutoff
on the SM EFT.

The operator above provides “Majorana mass term” for neutrinos,(
γ′ff

MBSM

v2
)
νfνf ′ . (2.161)

If MBSM ∼ 1016 GeV, mν ∼ 10−3 eV.

The operator can be generated by a UV renormalizable Lagrangian,

L ⊃ −mNNN − y(ϕL)N (2.162)

where N are “sterile” (uncharged under electroweak symmetry) neutrinos with large mN . After
electroweak symmetry breaking the neutrino mass matrix is of the form

mνN =

(
mN yv
yv 0

)
. (2.163)
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If mN ≫ v, the eigenvalues are approximately mN and −(yv)2/mN . This is the “seesaw mecha-
nism” for generating light neutrino masses.

The EFT interpretation of the same physics is that we should integrate out N at mN . This leaves
behind a light, mostly-L neutrino with tiny mass from the dimension-5 operator

Low energy experiments probe this operator through neutrinoless double beta decay (“0νββ”):

2.7.2 Dimension 6

LLFV =
λff ′

M2
BSM

(ϕ∗Lf )σ
µν ēf ′Fµν (2.164)

This operator induces lepton flavor-violating decays, for example, µ→ eγ:

Experimental limits are of order Br(µ → eγ) ≲ 10−11. Similar operators involving τs are less
constrained.

Sometimes these are written as dimension-5 operators without the Higgs. This is sensible because
the energy scale of the decay is a thousand times lower than the electroweak scale. However,
it is important that the dimension-5 operator breaks chiral symmetries including SU(2)L, so in
order to embed it in the SM, we must eventually dress the Lf with a Higgs. This promotes the
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dimension 5 operator to dimension 6. Consequently, the natural size of the dimension 5 coupling
is v/M2

BSM instead of 1/MBSM . The former may be much smaller.

LqEDM ⊂
λff ′

M2
BSM

F̃µν(Qϕ)σ
µν ū+ cc (2.165)

Here F̃µν ≡ 1
2
ϵµµρσF

ρσ. In the nonrelativistic limit this is an electric dipole moment operator for

up-type quarks, ∼ µuσ⃗ ·E⃗. It can be generated by integrating out heavy matter, for example

The quark EDM leads to a neutron EDM of order − mq
MBSM2

. Bounds on the neutron edm are of

the order 10−26e · cm, which corresponds to MBSM ≳ 100TeV.

If we just remove the tilde from F̃µν we obtain magnetic dipole moment operators. For example,
a typical contribution to the muon MDM is of the form

Lµg−2 =
mµ

M2
BSM

Fµνµ̄σ
µνµ. (2.166)

The nonrelativistic limit is a contribution −µµσ⃗ · B⃗ to the muon effective Hamiltonian.

Flavor-changing neutral current operators also arise at dimension 6. An example:

LFCNC =
ε

M2
BSM

(sσµd∗)(sσµd
∗) (2.167)

This is a ∆S = 2 operator and it contributes to K − K̄ mixing. This process arises at one loop in
the standard model, but is suppressed by small CKM elements. It can also receive contributions
from new physics, e.g.:

where the loop contains a new scalar and fermion.

If the couplings are O(1), K − K̄ mixing bounds MBSM ≳ 100 TeV. However, if new physics ap-
proximately conserves a symmetry that the operator violates, there could be a small dimensionless
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coefficient. More properly, MBSM ≳ (100
√
ε) TeV. New physics can be heavy, or weakly coupled,

or both.

Lp =
1

M2
BSM

(Qσµū∗)
(
Lσµd̄

∗) (2.168)

(Here we could also write ū∗ ≡ uR, d̄
∗ ≡ dR. The Q and L doublets are contracted in the SU(2)-

invariant way.) This operator is ∆B = 1, ∆L = 1. It contributions to proton decay, e.g.

The bound on the proton lifetime comes from staring very hard at very large tanks of very pure
water for a very long time. The current bound is of order τp ≳ 1033 years from which one infers
MBSM ≳ 1015 GeV. A contribution to Lp could come from integrating out heavy GUT bosons, for
example

The unification scale is generally expected to be of order 1015−16 GeV, coincidentally comparable to
the experimental reach. Unfortunately, since τp ∼M−4

BSM , sensitivity drops rapidly with unification
scale.

In sum, the success of the SM *might* be explained if all new physics is very heavy.

2.7.3 The electroweak hierarchy problem

Ironically, it is not the nonrenormalizable operators that pose a conceptual problem, but the
renormalizable ones. In the SM, there is only one: the (engineering) dimension-2 Higgs mass
operator. Pretty generically, radiative corrections give “quadratically divergent” contributions to
the counterterms for scalar mass parameters. For example,
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Quadratic divergences are regularization scheme dependent. However, they parametrize UV sen-
sitivity, or the typical size of quantum corrections, if Λ is the cutoff scale of the SM EFT.

For example, in DR+MS, there are no Λ2 terms in the loop diagram. Mass-independent schemes
never have such terms. But let us insert a physical UV completion. For simplicity, suppose we
have a scalar S coupled to a heavy fermion ψ as

LUV = ySψ̄ψ +mψψψ̄ + λS4 (2.169)

at some UV scale µ. Now let us integrate out ψ. At one loop, we have

≃
y2m2

ψ

16π2
(log(µ/mψ) + c) (2.170)

This has to be matched onto the IR theory of just S:

m2
IR = m2

UV (µ) +
y2m2

ψ

16π2

[
log

µ

mψ

+ c

]
(2.171)

We started off with m2
UV (µ) = 0. The log can be interpreted as running m2

UV from µ, the sale
where it vanishes, to the threshold mψ. It would be a coincidence if µ|m2

UV =0 = mψ! But even in

that case, there is a finite threshold correction ∆m2 =
y2m2

ψ

16π2 and c ∼ O(1) in general.

For this reason, the fine-tuning problem of scalar mass parameters is often illustrated, qualitatively,
by diagrams in the IR theory, just containing light fields in the loops. With Λ2 = m2

ψ, the
quadratic divergence encodes sensitivity to new UV physical scales. Physically, it is just reflecting
dimensional analysis and operator mixing under RG: if another relevant operator runs strong at
some UV scale, interactions will mix it with scalar mass-squared operators and attempt to drive
them strong as well.

So scalars “want” to be heavy. Symmetries can protect them:

1. Shift symmetries ϕ→ ϕ+ δ. This is the mechanism that keeps Goldstone bosons light. For
example, the pions of ChPT don’t have renormalizable couplings in the limit of exact chiral
symmetry. Coupling to electromagnetism breaks the chiral symmetry explicitly and leads to
quadratic divergences again.
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2. Bose-Fermi cancellations in supersymmetry

In the absence of symmetries or low cutoffs, relevant operators have to be fine-tuned in order to
be weakly coupled. For scalars, this means the bare mass-squared parameter has to be fine-tuned
to quadratic precision in order for the field to remain light. For example, if

m2
IR = m2

UV +
y2m2

ψ

16π2
(log(. . . ) + c) = 0 (2.172)

then m2
UV must be tuned against the *unrelated* parameters y and mψ in order to achieve mIR ≪

ymψ.

A fermion mass operator is also relevant (dimension 3), but in that case there is an (approximate)
symmetry.

⇒ βmψ ∼ mψ (2.173)

which vanishes as mψ → 0. This reflects the generic chiral symmetry ψ → eiαγ5ψ which is
restored as mψ → 0. Thus these operators acquire only multiplicative logarithmic sensitivity to
the cutoff.

Now let us look at the specific case of the SM Higgs boson, the only elementary scalar of the
Standard Model. The quadratic divergence is usually sketched as a top loop,

As discussed, sensitivity to the cutoff from this diagram can be viewed as a qualitative estimate of
various corrections at some high scale. For example, consider the seesaw mechanism of generating
neutrino masses. The Higgs can couple to a heavy right-handed neutrino νR as

yν(H · L)νR
(
H =

(
ϕ+

h

)
, L =

(
νL
ℓ−

))
. (2.174)

There is a heavy Majorana mass in the seesaw mechanism:

mMνRνR + cc. (2.175)

νR can be integrated out at mM . We saw this generates the Weinberg operator,

y2ν
mM

(H · L)(H · L) (2.176)
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which gives small masses to the νL. There is another important threshold correction:

∼ y2νm
2
M

16π2
(log µ/mM + c) .

The log contributes to βm2
H
∼ y2νm

2
M

16π2 . It causes m2
H to run above M2

M . If we started from m2
H(µ0),

the running shifts m2
H by ∆m2

H ≃
y2νm

2
M

16π2 log µ0
mM

. The constant c is a residual threshold correction
when we match onto an EFT with νR integrated out. So ultimately, the EFT contains a Higgs
mass

m2
H,EFT (mM) = m2

H(µ0) +
y2νm

2
M

16π2

[
log

(
µ0

mM

)
+ c

]
. (2.177)

If m2
M ≫ (1TeV)2, then ∆m2

H ≫ (100GeV)2 even if log and c are O(1). But at low energies, we
need m2

H,EFT ≈ (100GeV)2. So m2
H(µ0) has to delicately cancel ∆m2

H .

This problem is generic. The Higgs mass in the SM is not protected by any symmetries. All sorts
of UV physics can strongly affect it, by dimensional analysis:

If ∆m2
H ∼ (1016 GeV)2, as in GUTs, then m2

H(10
16 GeV) must cancel it to a part in 1026. If the

cutoff and correction are of order the Planck scale, then the cancellation must be good to a part
in 1032.

The radius of the solar system is like 1010 kilometers. A cancellation of a part in 1026 between
two unrelated quantities is like subtracting the radii of two solar systems (according to some
agreed-upon definition) and finding that they differ by a millimeter.

Small numbers like this cry out for dynamical explanation. An attractive solution is to introduce
new physics that eliminates the corrections to m2 from UV physics. Thus far no experimental
evidence of such a mechanism has been forthcoming. Supersymmetry is one theory that can
ameliorate the electroweak hierarchy problem, and we will study it later.
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2.7.4 The strong CP problem

Back in Sec. 2.6, we claimed that QCD has a SU(Nf )L × SU(Nf )R flavor symmetry. This was
incomplete. The classical symmetry is actually U(Nf )L×U(Nf )R, which appears to have two ad-
ditional U(1)’s worth of symmetry. The vector U(1) is baryon number, which is not spontaneously
broken by the chiral condensate. The axial U(1)A acts as

qi → eiαγ
5

qi (2.178)

in four-component fermion notation (i is a flavor index, which is a spectator for this symmetry),
or qiL ≡ qi → eiαqi, q∗iR ≡ q̄i → eiαq̄i in two-component fermion notation. It is spontaneously
broken along with all the other chiral symmetries by the chiral condensate. One can write a chiral
current

jµ5 = q̄γ5γµq (4 comp) (2.179)

and classically the symmetry is only explicitly broken by the mass,

∂µj
µ
5 = mq̄γ5q (2.180)

using the Dirac equation. So the current seems conserved in the limit m→ 0 and we might expect
a light goldstone boson, on the order of the kaon masses. But no light goldstone is observed. The
closest candidate is the η′ meson, which is almost a GeV.

This puzzle known as the “η′ problem,” which was ultimately resolved by the discovery of anomalies
and instantons. The U(1)A current has an ABJ anomaly with QCD. Under a U(1)A transformation
with parameter γ, the action shifts by

δΓ = γ∂µJ
µ = γ

(
nq
αs
2π

Tr(FF̃ ) + ψ̄imijγ
5ψj

)
(2.181)

where F is the gluon field strength and m is the quark mass matrix. As we will discuss later∫
Tr(FF̃ ) is nonzero on nonperturbative gluon fields, and so the U(1)A is strongly explicitly

broken around the confinement scale. So there is no tension with Goldstone’s theorem. There
is no small parameter in QCD that we could dial down to restore the symmetry (no spurion);
sending mij → 0 is not enough.

However, this raises a different puzzle. Tr(FF̃ ) is a marginal operator. It should be added to the
QCD Lagrangian:

∆L =
θ

16π2

∫
Tr(FF̃ )d4x (2.182)

We will see later that
∫
FF̃ is actually an integer-valued winding number, so the coupling θ is an

angle. We can try to remove it by a field redefinition (an anomalous U(1)A transformation): in
Eq. (2.181), let γ = −θ. But what this actually does is move θ from the coefficient of FF̃ into the
phase of the quark mass matrix. For a non-infinitesimal U(1)A transformation,

θ → θ + α, arg detm→ arg detm+ α (2.183)

(2.184)
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and so for α = −θ we have

m =

 mu

md

ms

→ ei
θ
3

 mu

md

ms

 (2.185)

This is a useful technique to incorporate θ into ChPT . More generally, we can say that

θ̄ ≡ θ + arg detm (2.186)

is a new field-redefinition invariant coupling/phase, which shows up in the renormalizable QCD
Lagrangian. Subsequently we will refer to θ, but we really mean θ̄.

In ChPT, one prediction of a nonzero θ is

Γ(η → ππ) ∼ m sin θ (2.187)

For θ → 0, the Goldstones are P -odd and interactions conserve P . For θ ̸= 0, P (FF̃ ) = −(FF̃ )⇒
P-violating processes like η → ππ occur at O(θ).

Observationally, nuclear, atomic, and molecular EDM experiments all show that θ is tiny. The
strongest bounds come from the neutron EDM.

On dimensional grounds: dn ≃ eθm−1
n ∼ θ · 10−14ecm. But dn < 10−26 e cm. Sharper estimates

include a 1/4π2 ⇒ θ ≲ 10−10.

This is weird.

• It’s easy to generate threshold corrections at tree level or one loops, e.g.

• CP is violated by the CKM phase, and by the obvious matter-antimatter asymmetry of the
universe: CP cannot be a good symmetry of nature

Now that we understand θ is physical, it is a big puzzle why it is so small.
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Solutions to the strong CP problem

(1) mu = 0.

If detm = 0, arg det m is unphysical. So we can “rotate away” θ by an anomalous U(1)A
transformation. More precisely, |mu/md| ≲ 10−10.

There are issues with this. Which mu should be set to zero? mu = mu(µ). The chiral sym-
metry mu → mue

iα can protect a mass if it is a good symmetry. But it is composed of a non-
anomalous SU(3)A transformation ei(β1T

3+β2T 8)γ5 , and an anomalous U(1)A transformation eiβ3Iγ
5

: we need

β1T
3 + β2T

8 + β3I = diag(α, 0, 0) (2.188)

which is three equations for three unknowns, and generically β3 is nonzero. So it is not a real
symmetry. And there is no reason not to expect UV contributions to Re(meff

u ).

One can build models, but they are quite elaborate, involving large discrete flavor symmetries like
Z4 × Z5 (Banks Nir Seiberg).

Furthermore, we saw in (leading order) ChPT that the meson masses imply mu/md ≃ 1/2. But
at which scale? There are subtleties at second order in ChPT that amount to renormalization of
mu by small instantons, in a way that does not regenerate θ.

(δmu)inst ∼ mdms/ΛQCD (2.189)

with a cutoff on instanton sizes of order ρ−1 ∼ ΛQCD. But because of an IR divergence in the
integration over instanton sizes, this is actually extremely sensitive to the IR cutoff: more precisely,
it reads

(δmu)inst ∼ (mdms/ΛQCD)× (ρIRΛQCD)
9 (2.190)

So the only conclusive test is lattice QCD: Set a small lattice spacing a ≪ Λ−1
QCD, feed in the

QCD lagrangian, and tweak mu until m2
π,m

2
K , fπ, mproton, et cetera match observations. The

result:

mu(µ ≃ 2GeV) ≃ 2± 0.1MeV (2.191)

So mu = 0 is excluded to high confidence! Evidently the instanton contribution is small, and
leading-order ChPT was a good guide:

mu(2GeV)

md(2GeV)
≃ 2

4
≃ 1/2. (2.192)

(2) Spontaneous CPV

Maybe CP is secretly a good symmetry, but is spontaneously broken in the UV. IF SSB occurs in
such a way that θ̄ is un affected, but CKM is generated, is strong CP solved?

We have to look at the radiative corrections. Remarkably, in the SM, βθ̄ starts at 7 loop order.
For any reasonable cutoff, ∆θ̄ ≪ 10−10 from running. This is the virtue of these models: small θ̄
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is not fine-turned in the SM, in the sense that the radiative corrections are tiny. (There are finite
corrections at lower loop order, but still high enough to be negligible.)

In the presence of new physics, however, all bets are off. It is generic that 1-loop effects recouple
ϕSCPV to FF̃

⇒ ⟨ϕSCPV ⟩
16π2M

= ∆θ

These models are complicated and radiatively unstable in most cases, but they are a popular
model-building playground.

(3) Peccei-Quinn mechanism

We have already seen a toy model for the Peccei-Quinn mechanism in our discussion of anomalies
in Sec. (2.4). The model is defined by Eq. (2.59), which we reproduce here:

L = − 1

4e2
FµνF̃

µν − 1

4g2
Tr(GµνG̃

µν) + |∂µϕ|2 + iQ̄ /DQ− yϕQQ̄− V (ϕ). (2.193)

After spontaneous symmetry breaking by the vev ⟨ϕ⟩ = f , we found a low-energy EFT description
containing the gauge fields and a Goldstone boson, with couplings given by Eq. (2.65). In particular
there was a coupling to QCD,

∼ c(yf)y

(yf)216π2
aTr(FF̃ ) =

c

16π2f
aTr(FF̃ ) ∈ Leff (2.194)

This violates the NGB shift symmetry, but preserves an a/f → a/f +2πk/c shift symmetry. Note
that a essentially makes θ dynamical:

L ⊃ θTr(FF̃ )→
(
θ + c

a

f

)
Tr(FF̃ ) ⊂ Leff (2.195)

We can also infer this coupling from the anomalous current, ∂µJ
µ
PQ ∼ Tr(FF̃ ) and Jµ ∼ f∂µa.

We saw that in ChPT we could move θ into the pion potential. We can do the same with ⟨a⟩ to
get a combined axion-pion potential.

U(1)A : ψ → ei(θ+c⟨a⟩/f)γ
5

ψ

⇒ L ⊃ −mqe
iθ+⟨a⟩/f⟨ψ̄ψ⟩e2iπaTa/fπ + cc (2.196)

For example, with only one light flavor, this would only be an axion potential (since the η′ is
heavy):

V (a) = −mq⟨ψ̄ψ⟩ cos (θ + ca/f) (2.197)
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The vev is c⟨a⟩/f = −θ. So, if we shift to the origin a→ ⟨a⟩+ δa, then

L ⊃ (a/f + θ)Tr(FF̃ )→ δa

f
Tr(FF̃ ) (2.198)

θ is dynamically relaxed! The prediction of the theory is a new light boson:

∂2V

∂a2

∣∣∣∣
a=⟨a⟩

∼ (mqΛQCD)f
2
π

f 2
a

→ m2
πf

2
π

f 2
a

(2.199)

Let’s plug in some numbers. (mπfπ)
2 ∼ (100MeV)2. To hide the new heavy fields (the color-

charged fermionsQ and the radial mode of the scalar ϕ), we need fa ≳ 1 TeV. If fa ∈ [TeV, 1016GeV],
ma ∈ [10−9eV, keV].

Note that this is a SM extension where the SM is not even the right EFT! There is a new light
particle that must be included, with purely higher dimension couplings to SM fields.

Issues:

• δa
f
FF̃ allows axion production in nuclear environments. Axion radiation cools large stars

too quickly. To suppress, we must increase fa : f ≥ 109GeV.

• In the hot early universe, can produce many axions. The simplest mechanism is called
misalignment, which results in coherent production. EOM: ä + 3Hȧ + V (a) = 0. For
H > ma, Hubble friction freezes a at some random value, typically O(f). When H < ma as
the universe cools, Hȧ can be ignored: coherent oscillations begin.

ρaosc ∼ m2
aa

2 ∼ m2
af

2

ρradosc ∼ T 4
osc ∼ H2

oscM
2
p ∼ m2

aM
2
p

The coherent oscillations redshift like matter, ρa/ρrad ∼ 1/T Requiring no matter domination
before 1 eV,

ρaosc
ρoscrad

∼ 1 eV

Tosc
∼ 1 eV√

maMp

or
m2
af

2
a

m2
aM

2
p

∼ 1eV√
maMp

∼ 1eV√
mafπMp/fa

which implies fa ≲ 1011 GeV. For fa ∼ 1011 GeV the QCD axion can be all of dark matter.
If fa is larger, one has to do more work to avoid overclosure. Narrow window..
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• We postulated an anomalous PQ symmetry. So it’s not a symmetry. Why shouldn’t there be
other sources of PQ violation, other than the QCD anomaly? E.g., a piece of lore: quantum
gravity breaks all global symmetries. If this breaking can be modeled in EFT via operators of

the form V ⊃
(

ϕ
Mp

)
|ϕ|4+q−1

(Mp)
q−1+cc, (which breaks PQ by 1 unit) then ∆Va ∼ f 4

a

(
fa
Mp

)q
cos(a/fa)

The minimum is moved by this correction, away from a = −θf . We require, roughly,

f 2
a (fa/Mp)

q < 10−10mπfπ/fa

Since fa is so large and mπfπ so small, this requires elimination of such higher dimension,
out to dimension 12 or so, for fa = 1011GeV. Why should PQ be of such high quality, only
to be broken by QCD? It is possible to invent mechanisms in quantum gravity such that the
violation of PQ by quantum gravity effects is nonperturbative, e.g.∼ e−M

2
p/f

2
a . In such cases

the axion does not have a quality problem.
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Chapter 3

Topological objects

3.1 Mathematical preliminaries

Manifolds

M is a collection of points such that ∀p ∈ M , there is a neighborhood homeomorphic to an open
set in Rn. We cover M with open sets Ui. Homeo ⇒ ∃ϕu : U → Dn, where D is an open disc and
ϕu is invertible. ϕ is called a chart, and points in Dn are coordinates.

Where two sets overlap,

we can use the coordinates of either. “Transition functions” ϕU ◦ ϕ−1
V transform V coordinates

into U coordinates.

Differentiable manifold: all transition functions are C∞. Transition functions are diffeomor-
phisms.

Example: M = S1 : we can use polar angle from y axis, θ, as a local coordinate. But we cannot
cover S1 in one chart, because θ and θ + 2π are the same point in S1. θ is not one to one, so we
need at least 2 charts.

Tangent Space

∀p ∈ M , there is an associated vector space TpM . The elements of TpM are the directional
derivative operators. A basis is given by ∂

∂xi
. The tangent bundle is the union of these vector

spaces, TM ≡
⋃
p TpM . A vector field, or a section of the tangent bundle, is a choice of element

of TpM∀p: x = ξi(x) ∂
∂xi

.
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Cotangent Space

The cotangent space T ∗
pM is the set of maps TpM → R. It is a vector space and the elements are

called “one forms.” We define a coordinate basis dxi by the rule:(
dxj,

∂

∂xi

)
= δji . (3.1)

We define an interior product ix as

ixω ≡
(
ωjdx

j, ξi
∂

∂xi

)
= ωiξ

i. (3.2)

Differential k-forms

We can define the k-fold antisymmetric tensor product of T ∗
pM . An element of this vector space

is a differental k-form:

ω =
1

k!
ωi1,...ikdx

i1∧ · · · ∧ dxik (3.3)

Here ∧ denotes an antisymmetric “wedge” product. The wedge product of a k-form α and a
p-form β is

α ∧ β =
1

k!p!
α[i1...ikβik+1...ip+k]dx

i1 ∧ . . . ∧ dxik+p (3.4)

The [. . .] notation on the indices denotes antisymmetrization, which includes a 1
(p+k)!

. It can
be added or removed for free because it is redundant with the antisymmetrization in the wedge
products. It can be convenient to carry around when working just with the components.

All k > n forms vanish on manifolds of dimension n, because dx∧ dx = 0 by antisymmetry.

Exterior derivative

The exterior derivative d is an operator that takes k-forms to k + 1-forms.

dω ≡ 1

k!

∂ωi1 . . . ik
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxik (3.5)

If f is a 0-form (a function) and ω is a one-form, then

df =
∂f

∂xi
dxi (3.6)

dω =
∂ωi
∂xj

dxj ∧ dxi = 1

2
(∂iωj − ∂jωi) dxi ∧ dxj (3.7)

On any form,

d2 ∝ ∂i∂j − ∂j∂i = 0. (3.8)

If α is a k-form, then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ. (3.9)
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Integration of forms

One sometimes reads the phase “it is natural to integrate k-forms on k-dim submanifolds of M .”
What this means is the following. First, construct a k-tensor of vectors called the coordinate
k-paralleliped. In three dimensions, for example, this is the 3-form:

v = ∆x∆y∆z∂x ⊗ ∂y ⊗ ∂z (3.10)

Now contract it with a k-form ω = 1
k!
ωi1...ikdx

i1 . . . dxik :

ivω =
1

k!
ωi1...ikϵ

i1...ik∆x1 . . .∆xk. (3.11)

The contraction is coordinate invariant. Then we replace ∆x1 . . .∆xk ≡ dkx, the ordinary inte-
gration measure. Then we integrate.

One may think of this construction as the k-form integration rule:

dxi1 ∧ . . . ∧ dxik ⇒ ϵi1...ikdkx. (3.12)

We can also integrate functions (0-forms) if we have a “volume form”. On n-dimensional Rie-
mannian manifolds there is a metric and ”canonical volume form.” To define it, first we need the
Hodge ⋆ operation, which is a map from k-forms to (n− k)-forms:

⋆ω ≡ 1

(n− k)!
1

k!

√
gϵi1...ing

i1j1 . . . gikjkωj1...jkdx
ik+1 ∧ . . . ∧ dxin . (3.13)

Then the volume form e is defined as

e ≡ ⋆1 (3.14)

=
1

n!

√
gϵi1...indx

i ∧ . . . ∧ dxin (3.15)

=
√
gdnx (3.16)

where, in going to the last line, we used the definition of how to integrate forms. We recognize
here the coordinate-invariant measure.

Essentially, k-forms transform inversely to dnx, which is why our integration of forms is coordinate
invariant. In the canonical volume form, the

√
g takes care of this. It is there in the definition of ⋆ so

that the (n−k) form components have the right transformation property given the transformation
property of the k-form components.

In practice it is convenient to integrate a p-form over a p-manifold like this:∫
F =

∫
(⋆pF )dVp. (3.17)
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Here ⋆pF is the dual on the p-manifold. With induced metric h,

⋆pF =
1

p!

1

(p− p)!
√
hhµ1ν1 . . . hµpνpϵν1...νpFµ1...µp

=
1

p!
√
h
ϵµ1...µpFµ1...µp . (3.18)

Alternatively, if we know that F = qe where e is the volume form, then the integration is simple
and gives qVp.

Other useful facts:

d(M ∧N) = dM ∧N +M ∧ dN(−1)m (3.19)

M ∧N = N ∧M(−1)mn (3.20)

M ∧ ⋆M = ⟨M,M⟩dV (3.21)

where ⟨M,M⟩ = 1
p!
Mi1...ipM

i1...ip . Only the wedge product of two identical one-forms vanishes; in
general two identical p-forms don’t have vanishing wedge product.

Closed & Exact forms

dω = 0⇒ ω is closed (3.22)

ω = dα⇒ ω is exact (3.23)

More precisely, ω is exact if it can be written as dα for a well-defined k − 1 for α. “well-defined”
will be important later.

• d2 = 0⇒ all exact forms are closed.

• Poincaré lemma: all closed forms are locally exact.

Of particular interest are closed forms that fail to be globally exact. The simplest examples are
volume forms on closed, boundary-less manifolds. As n-forms on n-dimensional manifolds, de = 0
holds automatically. Are they exact? (is e = db for some (n − 1)-form b?) Stokes’ Theorem is a
useful/ diagnostic:

∫
C

dω =

∫
∂C

ω (3.24)

where C is a k+1-dimensional subspace of M , ∂C is the boundary of C, and ω is a k-form.

So, if the volume form was exact, we would have∫
M

e
?
=

∫
M

db =

∫
∂M

b = 0 (3.25)

because ∂M = 0 . But the first integral is nonzero because it compute the volume. So the volume
form on such M is always closed and never exact.
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Example 1: M = S1. The volume form is often written “e = dθ.” This is crummy notation for
a 1-form that is closed but not exact, because the “0-form” θ is not globally defined (it is not a
function on the circle.) We have the volume∫

dθ = 2π (3.26)

What this means it we remove a point from the circle and do the integral on this patch where θ
is defined. The point contributes zero to the integral.

Example 2: M = S2. We write e = sin θdθ ∧ dφ. This is globally defined on S2. Locally,
e = d(− cos θdφ), but cos θdφ is not a globally defined 1-form because φ, dφ are not defined at
θ = 0, π. ∫

S2

e = 4π. (3.27)

de Rham cohomology

The kth cohomology group is

Hk(M) ≡ Ck(M)/Zk(M) (3.28)

where Ck(M) is the space of closed k-forms on M and Zk(M) is the space of exact k-forms.
Hk(M) forms an abelian group with group multiplication defined as addition of the forms.

Homotopy

Let f1, f2 be two maps:

f1(x) :M → N (3.29)

f2(x) :M → N (3.30)

where M , N are manifolds. Then f1 is homotopic to f2 if there is a continuous map f(x, τ), τ ∈
[0, 1] such that f(x, 0) = f1(x) and f(x, 1) = f2(x). We say that f1 and f2 are ”equivalent under
continuous deformations.”

Spheres provide an important class of example manifolds. πk(N) denotes the homotopy-equivalent
classes of maps from Sk → N . π1(N) : is called the “fundamental group” of N , and contains
equivalence classes of closed loops on N , where two loops are equivalent if they are deformable
into each other.

Example: π1 (R
2 − {0}).

109



We see that C0 ∼ C ′
0, C1 ∼ C ′

1, C0 ≁ C1.

Define addition of two loops by deforming them to have the same starting point and then traversing
both sequentially. Thus C0 + C0 ∼ C0, C0 + C1 ∼ C1, C1 + C1 ∼ C2.

So loops ∼= the group of integers, with C0 = 0. We conclude

π1(R2 − {0}) = Z (3.31)

and group multiplication = map composition. This sort of definition can be extended to other πk
- hence “homotopy groups.”

When the group is Z it is often possible to use elements of a cohomology group to define winding
numbers, which compute the homotopy class.1 This is a powerful technique.

Example: πn(S
n)

The maps are na(x) : SnM → SnN , with a = 1 . . . n + 1 and nana = 1. na are cartesian coordinates
on the target sphere.

The relevant element of Hn(Sn) is the volume form. The volume form on the sphere in these
coordinates is:

dVSn = i∂rdVRn+1 =

(
∂r,

1

(n+ 1)!
ϵa1,...an+1dn

a1 ∧ . . . ∧ dan+1
n

)
. (3.32)

Let na = n̄ar. Then dna = rdn̄a + n̄adr, so

dVSn =
1

(n+ 1)!
ϵa1...an+1

n̄a1dna2 ∧ . . . ∧ dnan+1 ± . . . . . . . . . . . .︸ ︷︷ ︸
n+1 equiv terms


(set r = 1) =

1

n!
ϵa1...an+1n

a1da2n ∧ . . . ∧ dan+1
n . (3.33)

1Technically, for πk(N) = Z, we look for an element of Hk(N) - that is, a form ω on N , which we pull back to
Sk and integrate. A pullback of a form is defined as follows. Given a map f : M → N and ω ∈ T ∗

f(p)N , we define

f∗ω ∈ T ∗
pM by (f∗ω, v ∈ TpM) =

(
w, f∗v ∈ Tf(p)N

)
where (f∗v)(h) = v(h(f)) for any function h on N .

110



Now plug in na → na(x) where x are coordinates on SnM . Then

1

V ol(Sn)

∫
SnM

1

n!
ϵa1...an+1n

a1(x)dna2(x) ∧ . . . ∧ dnam+1(x) ≡ Q[n]. (3.34)

Q[n] is the winding number of the map. It is a homotopy invariant: Q[n+ δn(x)]−Q[n] = 0. To
see it, we rearrange a little bit,

Q[n+ δn(x)]−Q[n] = 1

n!V ol(Sn)

∫ [
(n+ 1)δna1ϵa1...an+1dn

a2 ∧ . . . ∧ dnan+1

− nd
(
ϵa1...an+1δn

a1na2dna3 ∧ . . . ∧ dnan+1
) ]
.

(3.35)

The exact form integrates to zero on M . The first term vanishes because nana = 1→ δnana = 0
and ϵa1 . . . an+1dn

a2 ∧ . . . ∧ dnan+1 ∝ na1 .

The winding number computes how many times the sphere SnM is wrapped over SnN .
Example: the map f : θ, φ → θ′ = θ, φ′ = 2φ wraps S2

(N) twice over S2
(M). Change by on exact

form: same answer.

A gauge theory can be defined by a specification of bundles to include in the path integral. A
gauge field is a connection on a principal bundle. We will not need too much of this machinery.
Main things we need:

• Gauge fields ←→ forms on manifolds

• Gauge group G↔ gauge fields are only defined up to transition functions in G.

• Cohomology classes ↔ interesting/topologically nontrivial gauge field configurations, often
associated with a winding number.

Abelian gauge theory in form language

Define a 1-form A ≡ Aµdx
µ. Then

dA = ∂µAνdx
µ ∧ dxν

=
1

2
(∂µAν − ∂νAµ) dxµ ∧ dxν

=
1

2
Fµνdx

ν ∧ dxν

≡ F, a 2-form. (3.36)

Also

F = Eidx
0 ∧ dxi + 1

2
ϵijkB

kdxi ∧ dxj. (3.37)

Since F = dA locally, dF = 0. This encodes Bianchi and Maxwell, ∇ · B = 0 and ∇ × E =
−∂tB.
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In 4D the dual of a 2-form is a 4− 2 = 2 form:

⋆F = Bidx
0 ∧ dxi − 1

2
ϵijkE

kdxi ∧ dxj (3.38)

So Hodge duality swaps E → B,B → −E. d ⋆ F = ⋆J are the other two Maxwell equations. The
covariant action is

S = −1

2

∫
M

F ∧ ⋆F +

∫
M

A ∧ ⋆J

=

∫
d4x
√
g

{
−1

4
FµνF

µν + AµJ
µ

}
(3.39)

3.2 Wu-Yang Magnetic Monopole

The fields of a point charge are defined on R3−{0}. Now consider two patches of space, separated
by a surface E that is topologically R2 − {0}.

The gauge fields on N ∩ S = E orly have to agree up to a gauge transformation:

AN = AS +
1

e
dλ (3.40)

for some function exp(iλ(E)) ∈ U(1).

Now look at non-contractible loops L in E. Since U(1) = S1 and π1(S
1) = Z there should

be classes of homotopically-inequivalent maps from L → U(1) that are classified by a winding
number, e.g.,

λ = nθ n ∈ Z (3.41)

The class is computed by the cohomology element e, the volume form on S1, pulled back to L
λ = angle on U(1)⇒ dλ = volume element. So the object of interest is

∫
L
dλ (where dλ is not an

exact form on L.) For the example maps above, it is
∫
L
dλ = n

∫
L
dθ = 2πn.

Suppose we can find suitable gauge fields AN and AS that differ on E by a gauge function λ with
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winding number n. Then

2πn =

∫
L

dλ

= e

(∫
L

AN −
∫
L

AS

)
= e

(∫
N

FN +

∫
S

FS

)
= e

∫
S

F

= e×magnetic charge, using magnetic Gauss law (3.42)

Let the magnetic charge be m. Then we have found

em

2π
∈ Z. (3.43)

This is the Dirac quantization condition2, and here we have obtained it as a consequence of the
topology of the gauge group. The unit magnetic charge is thus 2π/e.

We can also write down some explicit gauge fields that do the job. For example,

AN ≡
m

4π
(1− cos θ)dϕ

AS ≡
m

4π
(−1− cos θ)dϕ (3.44)

The point of the “1” in AN and the “-1” in AS is so that AN = 0 at θ = 0 and AS = 0 at θ = π.
Otherwise, they are not defined at θ = 0, π because ϕ and dϕ are not defined there. With the
±1, AN is well-defined on all of N , and AS is well-defined on all of S.

Then dAN = dAS = m
4π

sin θdθ∧dϕ = F . On R3−{0} the field strength is a closed 2-form, dF = 0,
and it is proportional to the volume form on any S2 surrounding the origin. So∫

S2

F = m (3.45)

and more generally ∫
M2

F = m (3.46)

on any M2 homotopic to S2. This is the magnetic charge enclosed, by the magnetic version of the
Gauss law.

The magnetic field is

B = (3) ⋆ F =
m

4πr2
dr (3.47)

appropriate for a monopole of magnetic charge m.

2In natural units. Sometimes the quantization condition is reported in Gaussian units, where both types of
charge are scaled up by

√
4π, so that the quantization condition (still suppressing ℏs and cs) reads em ∈ Z/2.
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3.3 Monopoles in nonabelian gauge theories

3.3.1 ‘t Hooft-Polyakov monopole

The analysis of monopoles in nonabelian gauge theories is closest to that of the abelian theory
in cases where the gauge symmetry is “adjoint Higgsed” to a product of U(1)s. Add an adjoint
scalar ϕa. Then generically ⟨ϕa⟩ breaks SU(N) → U(1)N−1 at low energies. (To see this, write
ϕij = ϕaT aij, with T ∈ Cartan. This can always be done by an SU(N) transformation. Then ϕij
commutes with allN−1 commuting elements of Cartan, but generically no other generators.)

These models have nonsingular monopole solutions. Simplest example: Georgi-Glashow model
SU(2)→ U(1). ϕa is a triplet of SU(2).

S =

∫
d4x

[
−1

4
F a
µνF

µνa +
1

2
(Dµϕ)

a(Dµϕ)a − V (ϕ)

]
(Dµϕ)

a = ∂µϕ
a + eϵabcAbµϕ

c

V (ϕ) =
λ

4

(
ϕaϕa − v2

)2
(3.48)

We look for static, spherically symmetric solutions. IR-finiteness of the energy implies the solutions
must fall off like F a

ij ∼ 1/r2, (Dµϕ)a ∼ 1/r2. Because of the scalar potential, ϕ→ vϕ̂ exponentially

fast, where ϕ̂aϕ̂a = 1. So on a sphere far from the center of the solution, we have∫
S2

ϵabcϕ̂a(Dϕ̂)b ∧ (Dϕ̂)c ⇒ 0. (3.49)

Expanding it out, one can show that this implies

2e

∫
S2

ϕ̂aF a = 2e

∫
S2

ϵabcϕ̂adϕ̂b ∧ dϕ̂c = 8πQ[ϕ̂] (3.50)

The quantity ϕ̂aF a on the left-hand side is the unbroken U(1) magnetic field. The integral on the
right-hand side counts the winding number Q[ϕ̂] ∈ Z of the S2 vacuum manifold, parametrized
by ϕ̂ (recall SU(2)/U(1) ≃ S2) over the S2 at spatial infinity. The winding number is valued in Z
because π2(S

2) ≃ Z. So: ∫
S2

FU(1) =
4πQ

e
(3.51)

or

me = 4πZ. (3.52)

where
∫
F = m is the magnetic charge. Note that in our discussion of the Wu-Yang monopole,

2π appeared on the right-hand side instead of 4π. Evidently, not all monopole charges consistent
with Dirac quantization are produced by distinct topological classes in this model. More on this
shortly.
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So far we have just discussed the monopole fields far from the core. In the Georgi-Glashow
model, something interesting happens: the fields are smooth in the core, and the total energy is
finite.

For a monopole of unit magnetic charge, ϕ̂ is in a “hedgehog” configuration at infinity – everywhere
pointing away from the core:

For smoothness, we require ϕ → 0 somewhere. If it is only zero at a point, then by spherical
symmetry it must be at the origin. So right in the center of the core, the SU(2) is unbroken.

The size of the core can be understood physically as a competition between different terms in the
energy. Unbreaking the SU(2) costs energy density ∼ λv4. But if ϕ were vϕ̂ everywhere, then
the gradient energy ∼ v2/r2 would be singular at the origin. As we move inward in radius, the
gradient energy grows, and it becomes favorable to “shrink v” – i.e. let ϕ→ 0.

The field profiles take the form

ϕa = −vx
a

r

(
H(ξ)

ξ

)
Aai = ϵaik

xk

er2
[1−K(ξ)] (3.53)

where the functions H and K are functions of the dimensionless variable ξ = evr. In general they
must be obtained numerically by solving the second order field equations.

115



The energy is bounded by

E ≥
∫
d3x

[
1

2
(Ba

i )
2 +

1

2
((Diϕ)

a)2
]

=

∫
d3x

[
1

2
(Ba

i −Diϕ
a)2 +Ba

iDiϕ
a

]
≥
∫
d3x [Ba

iDiϕ
a]

=

∮
d2x n̂iBa

i ϕ
a (IBP, use Bianchi (DiBi)

a = 0)

= v

∮
F aϕ̂a

≥ 4πv

e
. (3.54)

This is called the BPS bound. It is saturated by the monopole solution in the limiting case λ→ 0,
and then the fields satisfy the first order BPS equations,

Ba
i = (Diϕ)

a. (3.55)

These (nine) nonlinear equations actually do admit analytic solutions.

3.3.2 Other monopoles

GNO classification. In unbroken SU(N) we can write down solutions that are monopole-like.
It turns out that up to a gauge transformation, all we have to do is take an abelian monopole and
multiply it by a generator matrix. However, they are not stable solutions.

First, we should say a word about the use of classical equations of motion. The weak coupling
limit is a semiclassical limit. This can be seen by rescaling the canonically normalized gauge field
by A→ A/g, after which the Yang-Mills action is rescaled from −1

2
Tr
∫
d4xF 2 → − 1

2g2
Tr
∫
d4xF 2.

All of the g dependence sits explicitly in front of the action, where it joins with ℏ to control the
semiclassical limit.
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Now the YM gauge coupling runs, and in asymptotically free theories it will reach strong coupling
eventually. There are two circumstances where we can use classical equations of motion. The first
case is when the theory is Higgsed at a scale where the coupling is weak. For example, in the
Georgi-Glashow discussion above, the adjoint Higgsing is presumed to take place at weak coupling.
The U(1) coupling is matched onto the SU(2) coupling at the scale v, and then since there are
no light charged particles, it does not run further in the IR. The second case where can still use
classical equations of motion is in regimes of high energy density. A semiclassical description of
monopole solutions in pure, unbroken Yang-Mills theory will be valid in an intermediate regime,
sufficiently far outside the monopole core where we can take the fields to fall off like 1/r, but
sufficiently close to the core that the energy densities still exceed the confinement scale. Since the
confinement scale is exponentially small, there can be a large range of distance scales over which
weak coupling and far field approximations are simultaneously valid.

We work in A0=0 gauge and we seek static solutions to the equations of motion. Actually, it is
not essential to fix A0 = 0 gauge; we can assume A0 vanishes if we restrict attention to time-
reversal-invariant static configurations. Then residual time-independent gauge transformations
can be used to set Ar = 0. We seek Ω(r) such that

ΩArΩ
−1 + iΩ∂rΩ

−1 = 0. (3.56)

A solution is3

Ω = Pei
∫ r drAr (3.57)

P denotes path ordering. Now in the far field regime, the gauge field is of the form

Aµdx
µ =

1

r
(aθ(θ, ϕ)dθ + aϕ(θ, ϕ)dϕ) +O(1/r2) (3.58)

where aϕ(0, ϕ) = aϕ(π, ϕ) = 0 in non-singular configurations. Finally, we can set aθ = 0 by a
θ, ϕ-dependent gauge transformation:

ΩaθΩ
−1 + iΩ∂θΩ

−1 = 0. (3.59)

We define the gauge transformation on two patches. In the northern (southern) hemisphere, we
integrate from the north (south) pole:

ΩN = Pei
∫ θ
θ=0 dθaθ

ΩS = Pei
∫ θ
θ=π dθaθ . (3.60)

3The path ordered exponential is defined as

Pei
∫ r drAr ≡ 1 +

∞∑
n=1

1

n!
P

n∏
i=1

(

∫ r

dri iAr(ri)) ≡ 1 +

∞∑
n=1

(i)n
∫ r

dr1

∫ r1

dr2· · ·
∫ rn−1

drn Ar(r1) . . . Ar(rn)

from which it is clear that
∂rΩ

−1 = −iAr(r)Ω
−1.
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We are left with aϕ(θ, ϕ). The general solution of the equations of motion DµF
µν = 0 is

aNϕ = q(1− cos θ)

aSϕ = −q(1 + cos θ) (3.61)

with constant matrix q. By a global SU(N) transformation, we can diagonalize q, in which case
it is a linear combination of Cartan generators.

Thus the general nonabelian monopole solution can be got by taking an Abelian solution and
multiplying by a diagonal generator matrix. The matching condition at θ = π is

e4πiq = I (3.62)

which quantizes the magnetic charge.

But π1(SU(N)) = 0, so these are not topologically stable. They are only stabilized if we adjoint
Higgs the theory. Nonetheless they play a role in the classification of line and surface operators
in the theory.

Gauging elements of the center. ZN ∈ SU(N) are elements of the group that commute with
all others. We can construct these, for example, by looking at the generator:

TN−1 ≡


1

1
. . .

1−N

 ∈ su(N) Cartan

exp
(
iαTN−1

)
=


eiα

. . .

eiα

eiα(1−N)

 (3.63)

Then for α = 2πk/N , we find exp
(
iαTN−1

)
= e2πik/NIN×N .

“Gauging center” means two elements of the gauge group g1, g2 are identified with each other
if they satisfy g1 = g2g3, for g3 ∈ ZN . We can gauge all of center – this theory is denoted
SU(N)/ZN – or just a subgroup. An important global difference between SU(N) theory, and
SU(N)/ZN theory, is π1(SU(N)/ZN) = ZN . So we can form closed, noncontractible loops in the
group manifold again, and use them to construct topologically stable monopoles:

ANµ = UASµU
−1 + iU∂µU

−1

U = eiθ
k
N
TN−1

U(θ = 0) = U(θ = 2π) e−iπikT
N−1/N︸ ︷︷ ︸

∈ZN .

(3.64)

118



This is how to recover the original Dirac quantization condition in the Georgi-Glashow model:
we have to gauge the center, changing the gauge group to SU(2)/Z2 ≃ SO(3). This introduces
new, topologically stable monopoles with half-integral magnetic charge relative to the SU(2)
theory.

The ZN charge of these monopoles is sometimes called ‘t Hooft charge, and the charge mod ZN is
sometimes called the GNO charge.

3.4 Polyakov Model

The model we will study is defined in the ultraviolet as SU(2) gauge theory weakly coupled to
a Higgs field in the adjoint (vector) representation. This is sometimes called the Georgi-Glashow
model, or in 2+1 dimensions, the Polyakov model. The Euclidean action is

S =

∫
d3x

(
1

4e2
(F a

µν)
2 + (DµΦ

a)2 +
1

4
λ((Φa)2 − v2)2

)
. (3.65)

Here we use the vector notation for the adjoint rep gauge indices rather than the matrix notation.
The covariant derivative is DµΦ

a = ∂µΦ
a+ ϵabcA

b
µΦ

c. The gauge field and e2 are of mass dimension
one. The scalar field and parameter v are of mass dimension 1/2, and λ is of mass dimension
one.

The vacuum manifold is ΦaΦa− v2 = 0, or S2. Without loss of generality let us take ⟨Φa⟩ = vδa3.
Then (DµΦ

a)2 → ((A1
µ)

2 + (A2
µ)

2)v2 in the vacuum. In this case there is a massless photon field
A3
µ, a massiveW boson, W±

µ = A1
µ± iA2

µ, mW = gv, and a massive scalar “Higgs boson” generated

by radial fluctuations of Φ, of mass
√
2λv. Angular fluctuations of Φ are Goldstone bosons eaten

to provide the longitudinal components of the massive W s.

Perturbatively, the theory appears simple in the IR. The massive W and Higgs decouple and we
are left with a free 2+1 dimensional electromagnetism. Nonperturbatively, the theory is much
more interesting.

We have discussed the magnetic monopoles of the 3+1 dimensional Georgi-Glashow model. They
are static solutions, independent of time. Therefore we can delete the time axis and automatically
instanton solutions to the 2+1 dimensional Euclidean equations of motion. These are sometimes
called “monopole-instantons” – we are just reinterpreting one of the spatial Cartesian axes of the
original monopole solution, say x3, as Euclidean time. Polyakov calculated the contribution of
instanton saddles to correlation functions of Wilson loops in the long-distance U(1) theory. We
will follow this derivation.
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We will use the singular gauge form of the solutions, which is convenient for superposing multiple
instantons. Far from the core at xµ = 0, we have

Φa → vδa3, W±
µ → 0,

Bµ ≡ F̃ 3
µ = ϵµνρF

3
νρ →

xµ
2r3
− 2πδµ3θ(x3)δ(x2)δ(x1) (3.66)

The dual field strength Bµ ≡ F̃ 3
µ is a vector in 2+1 dimensions. It falls off like 1/r2 apart from

a Dirac string singularity running along the positive x3 axis. The massive fields relax to the
vacuum.

An aside: if instantons describe tunneling, what states do the monopole instantons tunnel between?
In Lorentzian signature, continuing x3 → ix3, the µ = 3 component becomes a scalar magnetic
field. We can integrate it over a spatial slice. Let nµ = δµ3 be the unit normal to the time slices.
Then for large |x3|,

1

2π

∫
d2xnµF̃ 3

µ −→ −θ(x3). (3.67)

The instanton is tunneling between states of different (integer valued) magnetic flux.

Each instanton represents a separate saddle point contribution to the path integral. We also expect
to have approximate saddles when we superpose widely-separated instantons– this is the dilute
instanton gas. Here ‘widely-separated’ means compared to the core size. We will have to sum over
all of these saddles. Suppose we have a dilute gas of monopoles and antimonopoles at positions
xµa , a = 1 . . . N , with |xa − xb| ≫ 1/mW . Then the “magnetic field” is approximately

Bµ =
N∑
a=1

1

2
qa
(xµ − xµa)
|x− xa|3

− 2πδµ3

N∑
a=1

qaθ(x
3 − x3a)δ(x2 − x2a)δ(x1 − x1a). (3.68)

Here qa = +1 for monopoles and qa = −1 for antimonopoles. The euclidean action is the static
energy of the monopole gas in 3+1, or the volume integral of (F 3

µν)
2. There are two contributions:

the self-energies of each separate monopole, and the magnetic coulomb potential energy of each
pair. The self energies are of the form

∫
d3x1/r4 and are thus UV dominated, cut off by the

smooth nonabelian fields in the core. We already calculated this: the monopole mass is ∼ v2. The
interaction energies are∑

a̸=b

qaqb
8e2

∫
d3x

(xµ − xµa)
|x− xa|3

(xµ − xµb )
|x− xb|3

=
π

2g2

∑
a̸=b

qaqb
|xa − xb|

. (3.69)
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Putting the pieces together, the action of the collection is

S ≈ N
mW

g2
f(λ/e2) +

π

2e2

∑
a,b,a̸=b

qaqb
|xa − xb|

. (3.70)

The path integral sums over all N , charges qa, and locations xµa . There is an interesting technical
challenge in figuring out the measure for the xµa integration. We will postpone sorting this out
and just write it as cd3xa. Then the dilute instanton gas sum contributes to the total partition
function:

Z =
∑
N,{qa}

1

N !

(∫
cd3x1 · · ·

∫
cd3xNe

−S
)

=
∑
N,{qa}

(
ce−

mW
e2

f(λ/e2)
)N

N !

(∫
d3x1 · · ·

∫
d3xNe

− π
2e2

∑
a,b,a̸=b

qaqb
|xa−xb|

)
(3.71)

We can think of the Coulomb term in parenthesis as JGJ , where J is the charge density and G is
a Green function. In this case, since the charges are magnetic, G is not the two-point function of
the ordinary vector potential, which couples to electric charges, but rather the two-point function
of some dual magnetic vector potential. We will see this intuition borne out more precisely
momentarily. Mathematically we proceed as follows. Recall that the generating functional for
connected Euclidean correlation functions of a free scalar field is

− logZ[J ] = − log

∫
Dφe−

∫
M(

1
2
(∇φ)2+Jφ)

= −1

2
Tr log(−∇2) +

∫ ∫
JGJ. (3.72)

Let us divide Z[J ]/Z[0], or simply redefine the measure Dφ in Z[J ] with a normalization factor
such that Z[0] = 1. Then, with this normalization,

− logZ[J ] =

∫ ∫
JGJ. (3.73)

Now the Green function for the Laplace operator on R3 is

G(x; y) = − 1

4π|x− y|
(3.74)

so, on R3,

Z[J ] = e
1
4π

∫
d3xd3y

J(x)J(y)
|x−y| . (3.75)

So if we let

J → i

√
2π

e
ρ(x)

ρ(x) ≡
∑
a

qaδ
3(x− xa) (3.76)
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where ρ(x) is the monopole charge density, we can rewrite the Coulomb term in the partition
function as∫

d3x1 · · ·
∫
d3xNe

− π
2e2

∑
a,b,a̸=b

qaqb
|xa−xb| →

∫
d3x1 · · ·

∫
d3xN

∫
Dφe−

∫
d3x 1

2
(∇φ)2ei

π
e

∑
a qaφ(xa)

=

∫
Dφe−

∫
d3x 1

2
(∇φ)2

N∏
a=1

∫
d3xae

i
√

2π
e
qaφ(xa). (3.77)

We have used an arrow instead of an equals sign because the two sides are not quite the same: the
sum in the left-hand side omits a = b, while the right hand side gives rise to an

∫
JGJ of the form

−
∫
d3xd3y

∑
a,b qaqbδ

3(x−xa)δ3(y−xb) 1
|x−y| , where a = b terms are included, and quite divergent.

Fortunately, such terms are just monopole self-energy contributions. We can regulate the delta
functions (in an ad hoc way, or by considering the full SU(2) theory) and then we see that the
a = b terms are translation invariant and just provide a magnetostatic contribution to the mass
of each monopole (or the action of a single monopole-instanton.) Physically, the N divergences
are cut off at the finite core radius, and they are absorbed by renormalization of the Boltzmann

term e−N
mW
e2

f(λ/e2) in the partition function. Henceforth we take it as a definition of the functional
integral that these divergences will be subtracted.

Suppose we also add an external (background) gauge field Ã coupling to the monopole charge
density ρ. Then Eq. (3.78) becomes∫
d3x1 · · ·

∫
d3xNe

− π
2e2

∑
a,b,a̸=b

qaqb
|xa−xb| ei

∫
d3xÃ(x)ρ(x) =

∫
Dφe−

∫
d3x 1

2
(∇φ)2

N∏
a=1

∫
d3xae

i
√
2π
e
qa(φ(xa)+Ã(xa)).

(3.78)

This makes it clear that φ is indeed the dynamical part of the background “magnetic” gauge field
Ã (which is of mass dimension zero, if you’re checking dimensions.)

Plugging into Eq. (3.71) (to which we also add the background Ã), we have

Z[Ã] =
∑
N,{qa}

(
ce−

mW
e2

f(λ/g2)
)N

N !

∫
Dφe−

∫
d3x 1

2
(∇φ)2

N∏
a=1

∫
d3xae

i
√
2π
e
qa(φ(xa)+Ã(xa))

=
∑
N

(
ce−

mW
e2

f(λ/g2)
)N

N !

∫
Dφe−

∫
d3x 1

2
(∇φ)2

N∏
a=1

∫
d3xa2 cos

(√
2π

e
φ(xa) + Ã(xa)

)

=

∫
Dφe−

∫
d3x 1

2
(∇φ)2

∑
N

(
2ce

−mW
e2

f(λ/g2)
∫
d3x cos

(√
2π
e
φ(x)+Ã(x)

))N
N !

=

∫
Dφe

−
∫
d3x

[
1
2
(∇φ)2−2ce

−mW
e2

f(λ/g2)
cos

(√
2π
e
φ(x)+Ã(x)

)]

=

∫
Dφe−

e2

2π2

∫
d3x[ 12 (∇(φ−Ã))2−M2 cos(φ)] (3.79)
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In the last line we have shifted and rescaled the integration variable φ so that it is dimensionless,
dropping a constant rescaling of the measure which will not matter for our purposes. Remarkably,
the partition function is equivalent to that of a scalar field with a cosine potential, and the
scalar has an interpretation as a sort of dual gauge field, coupling to magnetic charge instead
of electric. The magnitude of the potential, M2, is exponentially small and nonperturbative,

M2 ∼ ce−
mW
e2

f(λ/e2).

Had we not known about monopole-instantons, we would have expected the infrared U(1) func-
tional integral to look like that of a free massless scalar field. The reason is we could dualize the
Maxwell field to a vector, Bµ = ϵµνρF

νρ, and then locally write Bµ = ∂µφ. φ is the dual gauge
field coupling to monopole charge. The effect of the instantons is to make the dual gauge field
massive.

We might expect that if the magnetic gauge field is massive, the electric gauge field is confining,
realizing ‘t Hooft’s idea of “confinement as a dual Meissner effect.” To show this explicitly we can
calculate the expectation value of the electric U(1) Wilson operator on a loop C bounding a region
S in the x1 − x2 plane,

W [C] = ⟨ei
∫
C A

3
µdx

µ⟩
= ⟨ei

∫
S dx

1dx2B3⟩
= ⟨ei

∫
S dx

1dx2
∫
d3yG(x⃗,y⃗)ρ(y⃗)⟩

= ⟨ei
∫
d3yÃ(y⃗)ρ(y⃗)⟩

(3.80)

where

Ã(y⃗) =

∫
S

dx1dx2G(x⃗, y⃗) =

∫
S

dx1dx2
(x3 − y3)
|x⃗− y⃗|3

(3.81)

Apparently, in order to evaluateW [C], all we need to do is evaluate the generating functional (3.79)
for the particular field (3.81). In the semiclassical limit, we must solve the Sine-Gordon-type
equation:

∇2(φ− Ã) =M2 sin(φ). (3.82)

The source term is

∇2
y

∫
S

dx1dx2
(x3 − y3)
|x⃗− y⃗|3

= 2πδ(y3)θS(y
1, y2) (3.83)

where θS(y
1, y2) = 1 for points in S, and zero otherwise. Deep in the interior of S, far from its

boundary C, we may approximate the equation of motion by a one-dimensional equation,

∂23φ(y
3)−M2 sin(φ(y3)) = −2πδ(y3) (3.84)

The solution is

φ(y3) = 4sgn(y3) tan−1
(
e−M |y3|

)
. (3.85)
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It is straightforward to verify that W [C] ∼ e−aMAS , where AS is the area of S, a is a constant,
and M is the constant above, of order e−mW /e2 .

So Maxwell theory, supplemented by monopoles, is a linearly confining theory in 2+1 dimen-
sions.

3.5 Dyons

We are studying heavy, stable objects. EFT methods can also be used to study the kinematics
and dynamics of low-energy excitations around some fixed number of these objects. Here we will
discuss the low-lying excitations of the ‘t Hooft-Polyakov monopole.

The starting point is symmetry. We can find low-energy excitations by reasoning analogous to
Goldstone’s theorem. Here is the procedure:

• Identify continuous symmetries that act trivially on the vacuum, but nontrivially on the
heavy state. In the present case if the static monopole solution is not invariant under some of
the symmetries of the vacuum, then acting on the monopole state with those transformations
will produce a new, degenerate solution. The parameters of such transformations are called
“moduli.”

• Allow the symmetry transformation parameters to vary slowly with the worldvolume co-
ordinates of the solution. A monopole is a particle, so this means we let the symmetry
transformation parameters acquire some slow time dependence. Its moduli are now some
quantum mechanical degrees of freedom.

• Plug the transformation, with slowly varying parameters, into the action, and integrate
over coordinates orthogonal to the worldvolume of the object. The result is an effective
action for the moduli, from which we can derive an effective Hamiltonian. Classically, the
moduli excitations are ungapped, due to the symmetry. Quantum mechanically, we have to
determine the spectrum of the effective Hamiltonian.

In the Georgi-Glashow model, the vacuum preserves a global U(1) symmetry (electromagnetism)
and the Poincare group. Of these symmetries, the monopole preserves only rotations and time
translations. Its moduli are associated with spatial translations – moving the monopole produces
an equally good monopole solutions – and, less trivially, U(1)EM . The reason it is not invariant
under U(1)EM is that the heavy charge W boson fields are excited in the core.

Another way to go about studying excitations is to consider an arbitrary variation,

Aaµ = Aa(0)µ + ϵaaµ, ϕa = ϕa(0) + ϵφa (3.86)

where A
a(0)
µ and ϕa(0) are the ‘t Hooft-Polyakov solution, and aaµ and φa are small fluctuations

with bookkeeping parameter ϵ. We then plug (3.86) into the Georgi-Glashow action and expand
to quadratic order in ϵ. This procedure finds all excitations, gapped and ungapped. (Care must
be taken to gauge fix, so that unphysical ungapped excitations are removed.) By focusing on the
moduli, we get just the lowest energy excitations, which are protected by the symmetries.

124



The translation moduli of the monopole are incorporated by the shift x⃗ → x⃗ + x⃗0(t). x⃗0(t) is
the slowly-varying “collective coordinate” describing the center of mass of the monopole. We can
guess the answer for its effective action, although it takes some work to actually derive it:

Leff [x⃗0(t)] =
1

2
Λẋ20 (3.87)

where Λ is the monopole mass. The low-lying excitations associated with translations just describe
free motion of the monopole, and the eigenstates of the effective Hamiltonian are labeled by
momentum, with nonrelativistic dispersion relation.

An infinitesimal global electromagnetic transformation is of the form (3.86) with

aaµ =
α

v
(D(0)

µ ϕ(0))a, φ = 0. (3.88)

with constant, U(1)-valued α. We promote α→ α(t) and plug into the action. Terms of order α

vanish by the equations of motion, satisfied by the monopole fields A
a(0)
µ , ϕa(0). Terms of order α2

almost all vanish because the transformation is a symmetry for constant α.4 The only terms that
survive contain time derivatives of α. These come from terms in F 2 of the form[

∂µ(α/v(D
(0)
ν ϕ(0))a)− ∂ν(α/v(D(0)

µ ϕ(0))a)
]2
. (3.89)

The cross terms in this expression vanish, because α is independent of space, ϕ(0) is independent
of time, and A

(0)
0 = 0. All that survives is

δL =
1

2v2
(α̇)2((D

(0)
i ϕ(0))a)2. (3.90)

The effective action for α is

S[α] =
c

2

∫
dt (α̇)2

c ≡ 1

v2

∫
d3x ((D

(0)
i ϕ(0))a)2 (3.91)

In the BPS case, the spatial integral is just Λ/e2, so c = Λ/m2
W . We have learned that there

is a low-energy excitation of the monopole that behaves like a quantum mechanical rotor (since
α ∼ α+ 2π)!

The meaning of the rotor excitations is quite interesting. First, they are quantized. The conjugate
momentum is

πα =
δLα
δα̇

= cα̇ (3.92)

so the effective Hamiltonian is

Hα =
1

2c
π2
α. (3.93)

4The transformation (3.88) has corrections of order α2, but to obtain the change in the action to order α2, only
the correction to the fields of order α is needed, since we are expanding around a solution.
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On the Hilbert space L2(S1) the momentum acts as −i∂α. So the eigenstates are ψn ∝ einα with
integer n, and the energy spectrum is En = 1

2c
n2. Quantum mechanically, there is a gap, but it is

very small at weak coupling, since mW/Λ ∼ e2/4π ≪ 1..

Secondly, the rotor excitations generate an electric field. Since Aa0 = 0, the unbroken electric field
is

E⃗EM =
1

v
E⃗aϕa

=
1

v
˙⃗
Aaϕa

=
1

v2
α̇ϕa(0)(D

(0)
i ϕ(0))a

=
1

cv2
παϕ

a(0)(D
(0)
i ϕ(0))a

→ n

cv2
ϕa(0)(D

(0)
i ϕ(0))a (3.94)

where, in the last line, we replace πα by its eigenvalue in the rotor energy eigenstates. Evidently, the
rotor excitations endow the monopole with electric charge! These objects are called dyons.

In the BPS case, ϕa(0)(D
(0)
i ϕ(0))a = ϕa(0)B

(0)
i , the unbroken magnetic field. So we may obtain the

charge from the electric and magnetic Gauss laws,

qe =
nm

cv
= ne. (3.95)

where m is the magnetic charge and we have used the minimal BPS monopole charge, m = 4π/e.
n is just telling us the (integer) charge of the dyon! So the SU(2) GG model contains magnetic
charges, electric charges, and objects charged under both.

There is a dyon quantization condition, generalizing Dirac quantization, due to Schwinger and
Zwanziger. The global structure of the gauge group plays a somewhat subtle role, which we will
not go into in detail; for a precise discussion, see https://arxiv.org/pdf/1305.0318. One way
to obtain the condition is to look at a dyon of charge qe, qm moving the background of another
dyon of charge q′e, q

′
m, compute the angular momentum, and demand that it is quantized in units

of 2πℏ. The result is

qeq
′
m − q′eqm = 2πZ. (3.96)

For example, take the ‘t Hooft-Polyakov monopole in SU(2), of magnetic charge qm = 4π/e and
electric charge qe = 0. Here the quantization condition is compatible with elementary electric
charges of charge qe = Ze/2: these are exactly what we would have found, at low energies, if we
had added matter fields carrying the fundamental rep of SU(2). So the allowed charge lattice of
the theory is (qe/e, qme/2π) = (Z/2, 2Z).

If the gauge group is SU(2)/Z2 ≃ SO(3), only elementary electric charges of charge qe = Ze are
allowed (e.g. the adjoint of SU(2), which upon higgsing produces charge-1W bosons.) The theory
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contains a monopole of (qe/e = 0, qme/2π = 1) (‘t Hooft charge 1, in the language of our previous
discussion). Together these states saturate the quantization condition and give rise to a charge
lattice (qe/e, qme/2π) = (Z,Z).

The charge quantization condition suggests another possibility: to have only dyons of charge
(qe/e = 1/2, qme/2π = 1) together with monopoles of charge (qe/e = 0, qme/2π = 2), as generators
of the charge lattice. Is this realized in a model?

3.5.1 Witten effect

Suppose we add a θ term to the Georgi-Glashow model. What impact does it have on the
monopole?

The θ term is topological, so it does not affect the equations of motion, and any solution – including
the monopole – obtained for θ = 0 remains a solution for nonzero θ. Likewise, it appears as a
total derivative in the effective α theory:

L ⊃ − θ

8π2

⇒ Lα ⊃ −
θα̇

8π2v

∫
d3x (Diϕ)

aBia

=
θα̇

8π2

∮
d2x ϕ̂aBia

=
θα̇

2π
. (3.97)

So

S[α] =

∫
dt [

1

2m
(α̇)2 +

θ

2π
α̇]. (3.98)

What the θ term does affect is the conjugate momentum, and thus the spectrum. The velocity-
momentum relation is now

πα =
α̇

m
+

θ

2π
(3.99)

so our electric field computation is modified:

E⃗EM =
1

v
E⃗aϕa

=
1

v
˙⃗Aaϕa

=
1

v2
α̇ϕa(0)(D

(0)
i ϕ(0))a

=
m

v2

(
πα −

θ

2π

)
ϕa(0)(D

(0)
i ϕ(0))a

→ 1

cv2

(
n− θ

2π

)
ϕa(0)(D

(0)
i ϕ(0))a. (3.100)

127



Therefore

qe =
n

cv
(n− θ/2π) = .e(n− θ/2π) (3.101)

again using the minimal BPS monopole charge m = 4π/e. Evidently, θ automatically endows the
monopole with electric charge, even for n = 0!

The electric-magnetic charge lattice exhibits an interesting periodicity. θ is an angle in weakly-
coupled theories like the GG model. The periodicity θ ∼ θ + 2π is realized by a monodromy in
the charge lattice. For θ = 0, for example, under θ → θ + 2π, an ordinary monopole becomes a
dyon with electric charge +e, a dyon of electric charge −e becomes an ordinary monopole, and so
on.

Something slightly different happens in the SO(3) theory. Here,

qe =
n

cv
(n− θ/2π) = e/2(n− θ/2π) (3.102)

using the minimal monopole charge m = 2π/e. In this theory, under θ → θ + 2π, the monopole
of magnetic charge 2π/e becomes a dyon with electric charge +e/2. There were no half-integral
electric charges, fundamental or dyonic, in the original theory! This is a different quantum theory
with a different charge lattice of states.

This provides an answer to the question raised above: if we start in the SO(3) theory (sometimes
called SO(3)+) with electric charges = e and monopoles of charge qme/2π = 1, then we take
θ → θ + 2π, we will arrive at the other consistent theory (SO(3)−) that we anticipated from the
quantization condition.

If we do another θ → θ+ 2π shift, we are back to states of integral electric charge and the charge
lattice of SO(3)+ again. In SO(3) gauge theory, θ is 4π-periodic.

3.6 Instantons in Yang-Mills Theory and QCD

In our discussion of the Polyakov model, we saw that the static monopole solutions of 3+1 di-
mensional theories can become instantons – localized, finite-action solutions of the Euclidean field
equations – if we simply remove the time direction. In 2+1 dimensions monopoles can cause
confinement. Are there similar solutions to the 3+1D Euclidean field equations? What are their
roles?

First, topology. Classically, the vacuum is Aµ = 0, up to a gauge transformation. A finite-action
solution must approach Aµ = iΩ∂µΩ

−1 at Euclidean infinity. Let’s look at pure SU(2) gauge
theory. The group manifold is SU(2) ≃ S3. On R4, Euclidean infinity is also an S3. So we
should consider homotopy classes of maps from the S3 at infinity to the S3 group manifold. As we
have seen π3(S

3) = Z, so we should look for classes of solutions that differ by an integer winding
number.

This number is computed by the integral of a “topological charge density” FF̃ :∫
d4xF aµνF̃ a

µν =

∫
d4x ∂µK

µ =

∫
S3

nµK
µ (3.103)
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where the Chern-Simons form is

Kµ = ϵµνρσ
(
AaνF

a
ρσ −

2

3
fabcAaνA

b
ρA

c
σ

)
. (3.104)

The flux of K integrated over the sphere at infinity computes the winding number, which is called
the topological charge,

1

32π2

∫
d4x(FF̃ ) = n. (3.105)

Now Re(SE) =
∫
d4x 1

4g2
FF , and since∫

(F ± F̃ )2 =
∫ (

F 2 + F̃ 2 ± 2FF̃
)

=

∫ (
2F 2 ± 2FF̃

)
≥ 0 (3.106)

we learn that
∫
F 2 ≥ ±

∫
FF̃ , which must be true for either sign, so

∫
F 2 ≥

∣∣∣∫ FF̃ ∣∣∣ or
Re(SE) ≥

8π2|n|
g2

. (3.107)

The bound is saturated for self-dual (anti-self-dual) configurations, for which F = ±F̃ . These are
automatically solutions to EOM since they saturate the bound on ReSE in a given topological
sector – the action cannot be reduced by small variations, so it is automatically a stationary
point.

A solution with n = 1, centered at the origin, is

Aµ = g−1
1 (x̂)∂µg1(x̂)

x2

x2 + ρ2
(3.108)

g1 = x̂µσ
µ. (3.109)

As discussed previously, A ∼ 1/x at large |x|, but the field strength behaves as

F ∼ ρ2

(x2 + ρ2)2
∼ 1

x4
(3.110)

so the action is finite. This is called the “BPST” instanton. It is a solution of the nonlinear
Euclidean field equations of SU(2) Yang-Mills theory. It automatically supplies solutions for other
gauge groups, by identifying SU(2) subgroups embedded in them. ρ is an arbitrary parameter
called the size modulus. It appears because the classical theory is scale invariant.

In the purely bosonic theory, what does the instanton describe? Consider R3 × R1. States on
R3 are finite energy Ai → const at spatial infinity in A0 = 0 gauge. If Ai → const at spatial
∞, we can treat ∞ as a single point! This compactifies R3 → S3. (This is a different S3 from
Euclidean infinity.) The pure-gauge states that can’t be deformed into each other are vacua of
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different k ∈ π3(S3), where this is the “spatial S3”: The BPST instanton describes tunneling from
k → k + 1 (more generally, (k → k + n).)

Instanton amplitudes are proportional to e−SE . Above we computed Re(SE) = 8π2|n|/g2. There
is also an imaginary contribution from the theta term:

SE ⊃ −i
θ

32π2

∫
(F aF̃ a) = −inθ (3.111)

so each topological sector is weighted by

e
− 8π2|n|

g2
+inθ

. (3.112)

Fermions

In a theory with vectorlike fermions, like QCD, we have the chiral anomaly ∂µJ
µ5 = g2FaF̃a

32π2 . Then
the instanton amplitudes explicitly violate the anomalous symmetry:∫

∂µJ
µ5d4x =

∫
d3xJ05

∣∣∣∣tf
ti

+ ( zero if no current through spatial ∞)

= ∆Q5 = n (3.113)

Note that while we could see ∂µJ
µ5 ̸= 0 via a one-loop computation, because the result was a total

derivative, a nonperturbative computation was required to see that the ABJ anomaly actually
results in nonconservation of the charge.

The Atiyah-Singer index theorem states that:

(nL − nR) zero modes of Dirac operator = (Dynkin index of irrep) × (Pontrjagin number of the
background gauge field.)

(nL − nR)∆Q =

∫
∂µJ

µ =
c

16π2

∫
F aF̃ a = 2cn (3.114)

So the anomaly coefficient c = (#zm)/2n.

Example: one SU(2)-fundamental Dirac fermion of charge 1 under an anomalous global axial
U(1):

c = Tr(QT aT b) = Tr(Q)Tr(T aT b) = (2)(1/2) = 1

#zm = 2 for n = 1. (3.115)

The presence of Dirac zero modes means that instanton amplitudes vanish unless there are enough
insertions of fermion operators to soak up the zero modes. These can be put in by hand, to make a
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correlation function, or they can come from mass insertions, etc. We can also view small instantons
as generating effective vertex:

Leff ⊃ e
− 8π2

g2
+iθ

det(ψaψb) (3.116)

for left-handed Weyl fermions ψ. Tying off zero modes with Dirac masses, the vacuum-vacuum

amplitude is proportional to e
− 8π2

g2
+iθ

det(m∗
ab).

So the vacuum energy depends on the physical combination θ̄ = θ − arg detm, as we anticipated
previously. flipped sign?

Can we compute m2
η′ from instantons? Recall that we have to sum over all semiclassical solutions.

This sum includes
∫
dρ, where ρ is the size modulus:

∆m2
η′ ∼

∫ ∞

0

dρe−8π2/g2(ρ−1)ρ−3

=

∫ ∞

0

dρ (Λρ)b0 ρ−3

= ∆m2
η′ ∼

∫ ∞

0

dρΛ9ρ6 (3.117)

This is strongly IR divergent.

However, QCD is not semiclassical on long distance scales. The structure of the vacuum state
is not close to the classical vacuum Aµ = 0 on distance scales longer than 1/Λ, and instanton
configurations are not distinguished compared to other configurations. We can cut off the size
modulus integral at ρ ∼ 1/Λ, but we must conclude that instantons only suggest qualitative
behaviors of the QCD vacuum. However, nonperturbative effects at strong coupling are clearly
violating U(1)A, since η

′ is so heavy.

Higgs theories

There are circumstances where instanton computations are reliable. There are some axial sym-
metry violating correlation functions in QCD which are dominated by small instantons, ρ≪ 1/Λ,
where the coupling is small and semiclassical approximations are valid. Instantons are also mean-
ingful in Higgs theories, where the gauge bosons gain mass at weak coupling.

3.7 Domain walls

Domain walls are finite-tension (energy/unit area) objects interpolating between degenerate vacua.
Stable walls are associated with spontaneously borken discrete symmetries. The canonical example
is a real scalar field with a global Z2 symmetry:

S =

∫
1

2
(∂ϕ)2 − g2

4
(ϕ2 − v2)2. (3.118)
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The ϕ → −ϕ symmetry is spontaneously broken in the vacuum state. The equation of motion is
∂2t ϕ−∇2ϕ = −U ′(ϕ). We look for static, 1D solutions interpolating from ±v to ∓v. The equation
of motion reduces to:

∂2zϕ = U ′(ϕ) (3.119)

which is Newton’s law with z =“time” and an inverted potential U → −U .

There is a conserved “energy,”

1

2
(∂zϕ)

2 + (−U) = 0 (3.120)

which means we can work instead with the first order equation

dϕ

dz
= ± g√

2
(ϕ2 − v2). (3.121)

We’ll choose “-” to interpolate from −v to v. The equation is easily integrated:

−
√
2

g

∫
dϕ

ϕ2 − v2
= z − z0 =

√
2

gv
tanh−1(ϕ/v) (3.122)

so

ϕ(z) = v tanh

(
gv√
2
(z − z0)

)
(3.123)
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like we drew. The tension is

σ =

∫ ∞

−∞

[
1

2
(∂zϕ)

2 +
g2

4
(ϕ2 − v2)2

]
(3.124)

Clearly z0 is a collective coordinate related to the translation symmetry broken by the domain
wall. If we promote it to z0(x, y, t), we can describe small excitations of the domain wall. For the
moment, we hold it fixed and continue with the tension computation. Note that

U =
1

2

(
∂W

∂ϕ

)2

, W =
g√
2

(
1

3
ϕ3 − v2ϕ

)
(3.125)

so the energy density is a sum of squares. As we did with the energy of the BPS monopole and
the action of the self-dual instanton, we rewrite the domain wlal tension as

σ =

∫ ∞

−∞
dz

[
1

2
(∂zϕ+W ′)2 − ∂ϕ

∂z

∂W

∂ϕ

]
. (3.126)

The second term is a total derivative, ∂ϕ
∂z

∂W
∂ϕ

= ∂W
∂z

, so we can integrate it to give

σ =W (v)︸ ︷︷ ︸
z→∞

−W (−v)︸ ︷︷ ︸
z→−∞

+

∫ ∞

−∞
dz

1

2
(∂zϕ+W ′)2︸ ︷︷ ︸
≥0

(3.127)

so

σ ≥W |v−v (3.128)

which is called the Bogolmol’nyi bound. The bound is saturated for ∂zϕ+W
′ = 0, or ∂zϕ =

√
−2U ,

which is the same as the first order equation we found previously. In general, the domain wall
extremizes the tension functional, and in this model, it saturates the lower bound.

Now let’s look at fluctuations of the moduli. Write ϕ = ϕ0(z − z0(x, y, t)), where ϕ0 is given by
Eq. (3.123). Plug it into the action (3.118). The result is

S =

∫
d4x

1

4
g2v4sech4

(
1√
2
gv(z − z0)

)(
(∂tz0)

2 − (∂xz0)
2 − (∂yz0)

2
)
. (3.129)

We can perform the z integral immediately, obtaining

S =

∫
d3x

√
2

3
gv3
(
(∂tz0)

2 − (∂xz0)
2 − (∂yz0)

2
)
. (3.130)

Thus the infrared theory contains excitations localized on the domain wall, corresponding to local
fluctuations in the domain wall position. They are described by a three dimensional massless
scalar field theory.

This is equivalent to a (generalization of) the Polyakov string worldsheet action in a particular
gauge. It can be generalized further by coupling to fermions, electromagnetism, and gravity, and
considering junctions and networks.
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3.8 Strings

We will discuss three types of strings, following the classifications of Polchinski and Banks-
Seiberg:

• global

• local/gauge/Abrikosov-Nielsen-Olesen (ANO)

• Aharonov-Bohm (AB)

The “local/global” terminology historical rather than optimal, which will become apparent shortly.

Global strings

QED is a “zero-form” U(1) gauge theory, meaning the transformation parameter is a zero-form,
a function. In zero-form gauge theories the gauge field is a 0 + 1 = 1-form. A 1-form may be
integrated along lines, which can be interpreted as worldlines of particles. Thus, the electrically
charged objects in a zero-form gauge theory are particles. They couple as

S ⊃ q

∫
WL

A (3.131)

where WL is a 1-dimensional worldline. Charged particles also source F = dA, so we can detect
the charges far away using the Gauss law:

∫
M2
⋆F ∝ Qencl.

These ideas generalize to higher-form gauge theories. A 1-form U(1) gauge theory has 1-form
transformation parameters and 2-form gauge fields B. A 2-form may be integrated over surfaces,
which can be interpreted as the worldsheets of strings. Thus, the electrically charged objects in a
zero-form gauge theory are particles. They couple as

S ⊃ q

∫
WS

B (3.132)

where WS is a 2-dimensional worldsheet. The gauge transformation is B → B + dA, where the
gauge transformation function A is itself a 1-form U(1) gauge field. The gauge invariant field
strength is a 3-form C = dB. The analog of the Gauss law is∫

ℓ

⋆C ∝ #strings in ℓ (3.133)
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Here ⋆C is a 1-form. In a static gauge, with cylindrical coordinates, the field configuration of the
string is Btz ∼ r, Ctrz ∼ 1, and ⋆C is a 1-form with constant θ component. Because d ⋆ C = 0,
the line integral around ℓ is topological.

Unfortunately, these are the objects called global strings. The reason is there is a more common
dual formulation. All such dualities have the form

⋆d(gauge field) = d(dual gauge field). (3.134)

In the present case, we would write

⋆C = dα (3.135)

where α is the dual zero-form (scalar). However, α cannot be well-defined everywhere– it must be
a zero form gauge field. This is necessary to satisfy the gauss law:∫

ℓ

⋆C =

∫
ℓ

dα ∝ #strings in ℓ (3.136)

which can only happen if α is compact – it is a scalar valued on the circle, which is what is means
to be a zero form U(1) gauge field. Then dα is a closed 1-form, but not exact, because α winds
around ℓ.

For example, for one infinite straight string, set up a cylindrical coordinate system with azimuthal
angle θ. Then the string configuration, in the dual formulation, is simply

α = θ. (3.137)

The string number is computed by the topological charge,

1

2π

∫
ℓ

dα = 1. (3.138)

This is our friend π1(S
1) again, here associated with maps from real-space loops surrounding the

string to the U(1)-valued field α.

We can write field theories that have these strings in their dynamical spectrum. For this the
dual formulation is more familiar and useful. The textbook example is the global Abelian Higgs
model,

L = |∂µϕ)|2 − λ(|ϕ|2 − v2)2 (3.139)

where ϕ is a complex scalar. This has a U(1) global symmetry that is completely spontaneously
broken. At low energies, ϕ→ veiα, where α is a real compact scalar Goldstone boson. The model
contains “global strings” which are defects around which α winds by 2πk. This is the dynamical
realization of the previous.

From the IR perspective, the defect is singular. The tension is

T =

∫
⊥
d2x[|∂iϕ|2 − U(ϕ)] (3.140)
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where the integral runs over the transverse directions. If we plug in ϕ = veikθ,

T → 2π

∫
rdr

∣∣∣∣1r∂θ(veikθ)
∣∣∣∣2

= 2πv2k2
∫
dr

r
(3.141)

which is log divergent in both the core and far from the string.

The field theory itself regulates the UV divergence in the core, by letting |ϕ| → 0 as r → 0.
This is symmetry restoration in the core, which we saw previously in our discussion of monopoles.
Then

r

∣∣∣∣1r∂θ(ϕ(r)eikθ)
∣∣∣∣2 ∼ |ϕ|2r (3.142)

which is integrable as r → 0 as long as ϕ goes to zero as ϕ ∼ 1/ log(r) or faster.

We can estimate the core size by an energy balance between the gradient terms and the poten-
tial:

r2cλv
4 ∼ v2

k2
r2cr

2
c

⇒ rc ∼
k

v
√
λ
. (3.143)

The IR divergence, however, is still there and signals something interesting: confinement.

So the energy density grows ∼ logL. Loops want to collapse.

In any case, we see that strings are a dynamical set of nonperturbative excitations in these models.
They source/couple to a 2-form gauge field in the dual description, and can be detected far away
by a generalized Gauss law.
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We must emphasize that the “2-form electric” U(1) gauge symmetry B → B+dA is different from
the “zero-form magnetic” U(1) symmetry α→ α + const. The latter is really a global symmetry
and might be explicitly broken. For example, we could add a term ϵ(ϕ+ϕ∗) to the scalar potential
in the AHM. The leading effect is to general a potential for α:

In the presence of this potential, α = θ is no longer a solution of the equations of motion. The
field can still wind around an axis, but it needs to “move quickly” through the high potential
region. The result is a domain wall that ends on the string.

Gauge and AB strings

Now let us gauge the U(1) global symmetry of the AHM, giving ϕ a charge q.

L = − 1

4g2
FµνF

µν + |Dϕ|2 − U(ϕ) (3.144)

We look again for a minimal energy string configuration, with ϕ = veiα(θ) far from the core. The
energy density far from the core will be

E ∼ E2 +B2 + |Dϕ|2 (3.145)

since U(|ϕ| = v) = 0. Now

|Dϕ|2 ∝ (∂θα− qAθ)2 (3.146)

so if α = θk, then we can minimize this term by taking Aθ = k/q. Since locally we can write
A = dλ, this is pure gauge and E = B = 0. So the energy density vanishes far from the core,
quite different from the global string. However,∫

ℓ

A =

∫
Aθdθ = 2πk/q (3.147)
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which equals the magnetic flux enclosed by the loop. Thus the energy density is not zero every-
where: the string core contains a magnetic flux tube. It is smooth because of symmetry restoration.
The fields have the form:

The tension is UV and IR finite in this case. Roughly, it is r2cU(0) ∼ v2. A more precise estimate
finds v2 log(λ/g2), which shows that the log divergence in the global string tension re-emerges in
the “global limit” g → 0.

For q = 1, the string number is completely ungauged. There is no analog of a long-range 2-form
field B, and we cannot detect the string far away. There is no Aharonov-Bohm effect here because
the magnetic flux is quantized. Furthermore the string number need not be conserved:

Or we can make flux tubes by separating monopoles:

The energy grows with the separation L. Linear confinement of magnetic charges↔ electric higgs
phase. This is the Meissner effect, dual to what we discussed in the Polyakov model.

For q > 1, the theory has an unbroken Zq gauge symmetry. ϕ → eiqλϕ, so λ = 2πn/q with
n = 0 . . . q − 1 leaves the vacuum invariant. Then the Wilson line around the k-string is

ei
∫
ℓ A = e2πik/q (3.148)

This phase can be detected in Aharonov-Bohm experiments with electric charge-1 probes. We see
that there are q-types of string corresponding to k = 0 . . . q − 1.
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3.9 Fermions in global string backgrounds

We’ll work in four dimensions, although a number of the results apply in even dimensions. Let
ϕ = ϕ1 + iϕ2 be a complex scalar field with a vev f and a flat direction, as in the global abelian
Higgs model. We couple it to a Dirac fermion via

L ⊃ −ψ̄(ϕ1 + iγ5ϕ2)ψ. (3.149)

By field redefinitions we can choose y to be real and positive. We want to solve the Dirac equation
on a global string background ϕ = f(r)e±iθ, where f(0) = 0 and f(∞) = f . Orient the string
so that its worldsheet is at fixed spacetime coordinates x1 = r cos θ, x2 = r cos θ. Then spacetime
coordinates x0, x3 can be used as worldsheet coordinates. Decompose the fermion into subspaces
of definite chirality by writing ψ = ψ+ + ψ−, where γ

5ψ± = ±ψ± and γ5 = iγ0γ1γ2γ3. The Dirac
equation is

i/∂ψ − y(ϕ1 + iγ5ϕ2)ψ = 0 (3.150)

which, projected onto the ± eigenspaces of γ5, splits into

i/∂ψ− − yϕψ+ = 0

i/∂ψ+ − yϕ∗ψ− = 0. (3.151)

Since ϕ introduces explicit dependence on θ, it is convenient to decompose /∂ into the transverse

and longitudinal contributions. Let /∂
int

= γa∂a for a = 0, 3. i/∂
int

is the Dirac operator on the
string. Similarly define a hermitian matrix γ5,int = γ0γ3. Let us also look for solutions that are
independent of θ (they respect the rotation invariance of the string.) All together, we have the
system

i/∂
int
ψ− + i(γ1 cos θ + γ2 sin θ)∂rψ− − yϕψ+ = 0

i/∂
int
ψ+ + i(γ1 cos θ + γ2 sin θ)∂rψ+ − yϕ∗ψ− = 0. (3.152)

Remarkably, it is straightforward to verify that there are chiral zero-mode solutions to Eq. (3.152)
bound to the string. What this means is, suppose we have a solution to the massless 2D Dirac

equation /∂
int
ψ− = 0 (a “zero mode”). Such solutions can be chosen to satisfy γ5,intψ− = ±ψ−

(“chiral”). Then, for one choice of this chirality, the solution can be embedded in a complete
solution to Eq. (3.152), where the support of the complete solution in the radial direction falls off
rapidly (“bound”).

To find these solutions explicitly, separate the fields as ψ− = η(x0, x1)h(r), ψ+ = χ(x0, x1)h(r),
where η and χ are spinors and h is a function. Then the first equation in (3.152) becomes

i(γ1 cos θ + γ2 sin θ)η∂rh− yϕχh = 0 (3.153)

using the ansatz /∂
int
η = 0. Clearly we want h′ = −yf(r)h, or

h(r) = e−y
∫ r
0 dr

′f(r′), (3.154)
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after which we have left

i(γ1 cos θ + γ2 sin θ)η = −e±iθχ. (3.155)

Now γ5η = −η, and γ5 = iγ5,intγ1γ2. So the chiral ansatz γ5,intη = bη, b = ±1, is equivalent to
γ1γ2η = ibη. Therefore

iγ1(cos θ − γ1γ2 sin θ)η = iγ1(cos θ − ib sin θ)η = −e±iθχ. (3.156)

We conclude that we must choose the two-dimensional chirality b, to be the opposite of the the
string charge ±1, and also set

χ = −iγ1η. (3.157)

This completes the solution. One can readily check that the second equation in Eq. (3.152)
is satisfied. The solution describes a chiral fermionic excitation propagating along the string
according to the 2D massless Dirac equation

(γ0∂0 + γ3∂3)η = 0, γ0γ3η = bη. (3.158)

Suppose the string charge is +1, so b = −1. Then in the Weyl basis for the gamma matrices,

η =


0
0
0
η̃

 . (3.159)

Similarly if the string charge is −1, b = +1 and

η =


0
0
η̃
0

 . (3.160)

So the equation of motion reduces to

(∂0 + b∂3)η̃ = 0, (3.161)

describing an excitation propagating at the speed of light in a direction correlated with the string
charge.

In the bulk, the fermions and the radial mode of the scalar are gapped by the scalar vev. Therefore
the EFT describing the low-energy limit of the string contains a massless bulk Goldstone boson,
a massless 2D scalar describing small fluctuations of the string, and a massless 2D chiral fermion
bound to the string!

The theory has a conserved current associated with the global U(1)F fermion number symmetry.
The matter content is vectorlike, so there is no U(1)3F ’t Hooft anomaly. We can couple this
current to electromagnetic fields. This is fine in the 4D description: it is one-flavor QED with a
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Yukawa coupling to a neutral scalar, from which the fermions gain a mass. But there is a puzzle:
we have found that the low-energy EFT contains a 1+1 dimensional chiral fermion living on the
string. The fermion number current in this theory has a ‘t Hooft anomaly, so 1+1 dimensional
QED with one Weyl fermion has a gauge anomaly,

∂aJ
a =

e

4π
ϵabFab (3.162)

where a, b are indices corresponding to the string worldsheet coordinates x0, x3. (This is half the
usual 2D chiral anomaly, since there is only one Weyl fermion.) Does anomaly matching fail? Is
the current conserved in the presence of background EM fields, nor not? Is the theory with gauged
fermion number consistent?

This puzzle is resolved by a mechanism called “anomaly inflow.” Charge can flow from the bulk
onto the string. Here is how it works.

By coupling to slowly varying background electromagnetic fields, the bulk EFT has an additional
coupling. It is just the aF F̃ coupling we saw in our discussion of axion electrodynamics,

S ⊃ α

2π

∫
θF ∧ F

=
α

2π

∫
φdA ∧ dA. (3.163)

where φ = a/f is the angle-valued Goldstone field. The current induced by the background fields
is

e⟨Jλ⟩ = δSeff
δAλ

= −α
π
ϵλγρσ(∂γφ)(∂ρAσ). (3.164)

In the string background ϕ = f(r)eiθ, ∂λJ
λ vanishes almost everywhere due to antisymmetry, but

the string is a singular line where neither the axion φ = arg(ϕ) nor the form dφ are defined, so we
need to be more careful there. The Stokes theorem tells us

1

2π

∫
∂Σ

dφ = 1 =
1

2π

∫
∂Σ

ddφ (3.165)

so

ddφ = 2πδ(x1)δ(x2)dx0 ∧ dx3 (3.166)

and

∂λJ
λ = − e

4π
δ(x1)δ(x2)ϵabFab (3.167)

where a, b are indices on the string worldsheet. We see that an applied electric field longitudinal
to the string induces a radial current (3.167), and current conservation is rescued. This is an
example of a general mechanism: an anomaly can be canceled by coupling the theory to a higher
dimensional bulk.

This was a case where anomalous theory lives on a codimension-2 surface in the bulk. Another
interesting example is:
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3.10 Fermions in domain wall backgrounds

Let

L = ψ̄i/∂ψ +
1

2
(∂µϕ)

2 − yϕψ̄ψ − 1

4
(ϕ2 − f 2)2. (3.168)

ϕ is a real scalar. In this case we consider the theory in five spacetime dimensions. There is
a domain wall solution interpolating between ϕ = ±f . The worldvolume of the domain wall is
four dimensional, so it is useful to think of it as our spacetime living inside a higher dimensional
bulk.

At the wall, ϕ → 0 and the fermion mass vanishes. Crossing the wall, the fermion mass changes
sign. Choose coordinates so that the wall is at fixed x4 and x0,1,2,3 are internal coordinates on the
wall. The Dirac equation is

i/∂
int
ψ − iγ5∂4ψ = yϕψ. (3.169)

where γ5 is the extra Dirac matrix included in the Clifford algebra in five dimensions. Again there
is a zero mode of definite chirality,

ψ = η(xint)e−y
∫ x4
0 dx′ϕ(x′) , /∂

int
η = 0, γ5η = η. (3.170)

Now a similar puzzle arises: the low energy theory contains a 4D Weyl fermion, some 4D scalars,
and a 5D bulk Goldstone boson. The 4D U(1)F fermion number symmetry has a U(1)3F anomaly
which can be expressed as ∂µJ

µ ∝ FF̃ . The theory (3.168) does not have this anomaly. If we
couple the U(1)F current to background gauge fields, what happens? In this case, the 5D EFT has
a Chern-Simons term coupling to the sign of ϕ. A similar calculation reveals an induced current
flowing onto the wall from the bulk.

3.11 Vacuum Decay

This section is somewhat outside the theme of the chapter, since topology plays no role. However,
it is morally closely related to the discussion of domain walls and instantons, and uses similar
semiclassical techniques.

We will discuss the bubble nucleation processes by which metastable field theory vacua can decay.
For example, the scalar potential below exhibits a metastable vacuum state:
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In the standard semiclassical treatment of vacuum decay, one searches for saddle points of the
Euclidean path integral that describe bubble nucleation. These are solutions to the equations of
motion in which the fields asymptote to the false vacuum in all directions at Euclidean infinity, but
interpolate to somewhere around the true vacuum inside a finite hyperspherical “bubble.” Since
the fields are only excited in a finite region of Euclidean spacetime, like the BPST instanton, these
are also called instanton, or sometimes “bounce,” solutions.

To illustrate another application of effective field theory, we won’t consider the most general field
theoretic problem. What we lose in generality we gain in simplicity. In fact, we are only going
to study the quantum mechanics of a single degree of freedom R, which will be identified with a
collective coordinate – the radius of the bubble of true vacuum, nucleating inside the sea of false
vacuum. R = 0, the “bubble of zero radius,” is identified with the metastable ground state in the
semiclassical limit, the empty false vacuum.

We start from a simple, concrete field theory setting: consider a real scalar field in 3+1 dimensions
with a double-well potential and a small symmetry breaking parameter ϵ,

V (ϕ) =
1

2
λ(ϕ2 − a2)2 − (ϵ/2a)ϕ. (3.171)

This potential, like the figure above, exhibits a metastable vacuum state. For ϵ → 0, the theory
would possess two degenerate vacua and heavy, stable domain wall solutions interpolating between
them. For small finite ϵ, we can imagine bending a domain wall into a large spherical bubble, with
the true (lower energy density) vacuum on the inside. Playing the vacuum energy off the domain
wall tension, we can arrange for a configuration with the same energy as the false vacuum. This
is a candidate “decay product” for the false vacuum, since it conserves energy. We have to see,
however, how to compute the decay rate.

Since the spherical bubble will need to be very large for small ϵ, we may neglect the slow accel-
erations driven by curvature and the energy gap ϵ, the equation of motion describing the heavy
domain wall degree of freedom is ∂2t ϕ− ∂2rϕ+ 2λ(ϕ2 − a2)ϕ = 0. The relevant solutions are

ϕ ≈ a tanh

[√
λa(R + vt− r)√

1− v2

]
. (3.172)

Here R is a large radius, v is the wall velocity, the wall tension is given by σ ∝
√
λa3, and the

factor of 1√
1−v2 accounts for length contraction of the wall thickness.

To obtain an effective action for slow variations of v driven by curvature and pressure, we replace
R+ vt→ R(t), v → Ṙ(t), and plug these field configurations into the Klein-Gordon action. Upon

so doing each term in the Lagrangian is found to be proportional to f(r) sech4

[√
λa(R−r)√
1−Ṙ2

]
. In

the thin-wall limit
√
λa√

1−Ṙ2
R ≫ 1 the sech4 is sharply peaked around r = R, so we may replace

f(r)→ f(R) and do the integral over space. One obtains an effective Lagrangian for the collective
coordinate R(t), given by Eq. (3.173) below with p = 3 and R0 = 3σ/ϵ:

L/ϵ = cϵ
(
−R0R

p−1
√
1− (∂tR)2 +Rp

)
. (3.173)
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c is a numerical constant. In fact a large class of field theoretic vacuum decay processes are
described by this effective Lagrangian at the leading semiclassical order, including thin-wall bubble
nucleation in d = p spatial dimensions, Schwinger pair production in a constant background electric
field for p = 1, and bubble of nothing decays for p = d − 1. (Therefore R is assumed to be ≥ 0,
since it plays the role of a radial collective coordinate.)

Having obtained an effective quantummechanical theory (3.173), we would like to use it to compute
a tunneling rate. We formulate it as follows: we study quantum mechanical transition amplitudes
of the form

⟨ψf (R,Tf )|ψi(R, Ti)⟩ = N

∫
dRidRf

∫ R(Tf )=Rf

R(Ti)=Ri

DReiS/ℏ ,

S = Si(Ri)− Sf (Rf ) +

∫ Tf

Ti

dt L(∂tR,R, t). (3.174)

The initial and final states are given by wavefunctions parametrized as ψ(R) = eiSi,f (R)/ℏ, where
Si,f are complex functions. In tunneling problems these wavefunctions should be localized inside
and outside of a false vacuum well. We have written explicit factors of ℏ to indicate that we are
interested in states where both the real and imaginary parts of Si,f contain contributions of order
one in the ℏ expansion, like coherent states, but subsequently we will drop the ℏs.

Next, we perform a Wick rotation of the time contour, t→ −iτ . Now the path integral describing
the amplitude is ∫

dRidRf

∫ R(Tf )=Rf

R(Ti)=Ri

DRe−Sc ,

Sc = −iSi(Ri) + iSf (Rf )− i
∫ Tf

Ti

dτ Lc(∂τR,R, τ)

Lc(∂τR,R, τ) = −iL(i∂τR,R,−iτ). (3.175)

In the leading semiclassical approximation we are interested in solutions to the bulk Euler-Lagrange
equation, δLc/δR−∂τ (δLc/δ∂τR) = 0. The equation of motion can be replaced by the conservation
of energy condition if L does not depend explicitly on t.

Finally, we relax the Dirichlet boundary conditions used in ordinary semiclassical treatments of
the path integral. Since we have introduced general initial and final states, we can consider unre-
stricted boundary variations. Stationarity of the action then gives rise to the following boundary
relations:

pi ≡
δLc
δ∂τR

∣∣∣∣
τ=Ti

= S ′
i(Ri)

pf ≡
δLc
δ∂τR

∣∣∣∣
τ=Tf

= S ′
f (Rf ). (3.176)

Eq. (3.176) relates the initial and final momenta of the semiclassical trajectories to the gradient of
the wavefunction at the initial and final positions. A totally generic initial and final wavefunction,
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and a given solution R(τ), will not in general satisfy Eq. (3.176), and so will not provide a
single saddle point approximation to the full path integral, including the initial and final states as
described above. One can instead find solutions to the bulk equations of motion first, and then
use Eq. (3.176) to infer wavefunctions with consistent properties, such that those solutions provide
genuine saddle points of the full path integral. These are generally weak constraints on the initial
and final wavefunctions, only constraining their gradients at points, but we must determine them
after the fact.

These self-consistency conditions have very natural physical interpretations. For example, the real
part of the momentum at the semiclassical endpoints has to match the momentum of the initial
and final state wavefunctions in the eikonal approximation.

Although this is an acceptable formulation of a tunneling problem, it is not generally how the
computation is carried out in standard problems. Since (3.173) does not depend explicitly on
time, there is a conserved energy. There is a false vacuum at RFV = 0 with EFV = 0, and the
classical turning point is RTP = R0. So one can instead solve a variational problem with fixed
energy:

EE = EFV (3.177)

where EE is the Euclidean energy and EFV = V (RFV ) is the value of the potential in the classical
false vacuum RFV . Typically there is a solution to Eq. (3.177) that starts at RFV and reaches the
classical turning point R = RTP with zero momentum at some later time, which is determined by
the solution. We are taking a different approach which offers some useful generalizations and a
different perspective, but for the application below the approaches are equivalent.

We note that it is important not to consider a path integral with fixed initial and final times and
fixed initial and final values of R. Position eigenstates have completely uncertain momentum, and
there will always be solutions, unrelated to tunneling, that have enough energy to summit the bar-
rier classically. The fixed-energy formulation avoids these complications, as does the wavepacket
formulation, as long as the gradients in the wavepacket are not too large.

For p > 1, the solutions relevant for tunneling are quite simple. In the Euclidean case t → −iτ ,
they are

R = Θ(τ +R0)
√
R2

0 − τ 2. (3.178)

The solution is real in the relevant range of τ , and the nucleation point is R(0) = R0 = 3σ/ϵ,
where the momentum vanishes. It is consistent with initial and final wavepacket states peaked at
Ri = 0 and Rf = R0.

The on-shell action gives the tunneling exponent. For example, for p = 3, one finds

Re

[
−i
∫ Tf

Ti

dτ Lc(∂τR,R, τ)

]
=
cπR4

0ϵ

16
=

81cπσ4

16ϵ3
(3.179)

So the tunneling amplitude is proportional to

e−
81cπσ4

16ϵ3 . (3.180)

145



More precisely, to really get an answer to our Lorentzian transition amplitude question, we need
to analytically continue the amplitude in the complex Ti-plane back to the real time axis, for fixed
final states. Here we will be content with a plausibility argument. We have already seen that
the tunneling exponent is independent of Ti (if |Ti| > R0, so that the trajectory described by
the instanton has enough time to complete.) Furthermore, on physical grounds, the decay rate is
expected to be constant over timescales long compared to the perturbative timescales in the false
vacuum and short compared to the lifetime. Therefore we make the plausible assumption that Ti
can be continued back to the real axis trivially, and (3.180) is the leading semiclassical estimate
for the transition rate. This can also be justified by the fully Euclidean computation of Coleman
and Callan, which uses the optical theorem.

After nucleation, the semiclassical state is a bubble of radius R0 at rest. Its subsequent evolution
is easily obtained by analytic continuation of (3.178):

R =
√
R2

0 + t2, t ≥ 0. (3.181)

The bubble expands outward, and on a timescale of order a few R0 it is expanding at the speed
of light.
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Chapter 4

Supersymmetry

4.1 Supersymmetry

Poincare Algebra:

[P µ, P ν ] = 0 Translations

[Mµν ,Mρσ] = igνρMµσ − igµρMνσ − igνσMµρ + igµσMνρ

[Mµν , Pρ] = −igρµPν + igρνPµ. (4.1)

Here Mµν = −Mνµ, M0i = Ki are the boosts, and Mij = ϵijkJk are the rotations.

There is an extension to include generators with spinor indices:

[Mµν , Qα] =
1

2
(σµν)βαQβ

(
σµν =

1

2

(
σµαα̇(σ̄

ν)α̇β − σναα̇(σ̄µ)α̇β
))

[
QA
α , P

µ
]
= 0{

QA
α , Q

∗B
β̇

}
= 2σµ

αβ̇
Pµδ

AB A,B = 1 . . . N. (4.2)

All anti/commutators vanish, apart from possible central charges.

The spinor nature of the Q’s and the anticommutator the result of a pair of deep theorems which
we will only quote:

Coleman-Mandula:
Given (1) Local, relativistic, 4D QFT with S-matrix
(2) Finite particle species
(3) Gap Then the most general Lie algebra of symmetries of the S-matrix is the Poincare algebra
× internal global symmetries.
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Haag Lopuszanski Sohnius: If anticommutators are allowed (graded Lie algebra), then the previous
structure is the most general allowed.

N = 1 is the most plausible for low energy phenomenology, because it is the only case consistent
with chiral fermions.

In ordinary QFT, fields come in finite-dimensional representations of Poincare: Aµ, ψα, ϕ . . .

In SUSY, we will see that fields are in finite-dim reps of super-Poincare that include fields of
different spin as components

Chiral superfields: (ϕ, ψα)
Vector superfields: (λαAµ)
Gravity superfield: ( ψµα, gµν)

4.1.1 Superspace

Superspace is a convenient way to write field content in SUSY and build invariant actions. We
need some definitions.

First, we extend the spacetime coordinates:

xµ → xµ, θα, θ
∗
α̇(≡ θ̄α̇) (4.3)

The θ’s are Grassmann-valued two-component spinors:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0 (4.4)

(unlike [xµ, xν ] = 0) (4.5)

Since [θµ, θα] = 0 and {θα, θα} = 0,

θαθα = 0. (4.6)

This makes Taylor series simple.

Derivatives also satisfy anticommutation:{
∂

∂θα
,
∂

∂θ̄β

}
= 0, etc. (4.7)

Integration is defined by requiring ∫
dθf(θ + ϵ) =

∫
dθf(θ) (4.8)

which is a generalization to Grassmann integration of the more familiar∫ ∞

−∞
dxf(x) =

∫ ∞

−∞
dxf(x+ a). (4.9)
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Since, for a single Grassmann variable, the Taylor series terminates at linear order,

f(θ) = f(0) + θf ′(0)

f(θ + ϵ) = f(0) + (θ + ϵ)f ′(0) (4.10)

we will satisfy Eq. (4.8) if we assign the rules∫
dθ 1 = 0∫
dθ θ = 1 (4.11)

Simple!

For Grassmann-valued spinors θα, θ̄γ̇, the rules become∫
d2θθαθβϵ

αβ = 1 ≡
∫
d2θθ2∫

d2θ̄ θ̄2 = 1 (4.12)

and all others vanish.1

In superspace, the Q, Q̄ generators of the super-Poincare algebra are represented by differential
operators, much like Pµ → i∂µ when acting in functions in ordinary space.

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ

Q̄α̇ = − ∂

∂θ̄α
+ iθασµαα̇∂µ. (4.13)

Note: since [P ] = 1 and Q2 ∼ P , the dimensions of Q and θ are [Q] = 1/2, [θ] = −1/2.

These differential operators obey the super-Poincare algebra. This is why superspace is so conve-
nient!
Much like eiHt generates finite time translations,

eϵQ+ϵ̄Q̄Φ(xµ, θ̄, θ̄) = Φ(xµ − iϵσµθ̄ + iθσµϵ̄, θ + ϵ, θ̄ + ϵ̄) (4.14)

generates superspace translations.

To get representations (function spaces on which the Q’s act irreducibly), it is useful to introduce
Dα, D̄α̇, defined as

Dα = ∂α + iσµαα̇θ̇
α̇∂µ, D̄α̇ = −∂α̇ − iθασµαα̇∂µ (4.15)

1ϵ appears here because it is an SL(2, C) invariant tensor, meaning Mγ
αM

δ
βϵγδ = ϵαβ for M ∈ SL(2, C), which

is the Weyl representation of the Lorentz group.
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which can be shown to satisfy{
Dα, D̄α̇

}
= 0, {D,D} = 0, [D,Q] = 0. (4.16)

Since [D,Q] = 0, we find the useful result that D̄Φ = 0 and DΦ̄ = 0 are super-Poincare-invariant
equations. Fields that satisfy the first (second) of these equations are called chiral (antichiral)
superfields.

Chiral superfields

Now let us construct chiral superfields. Note that

D̄α̇

(
yµ ≡ xµ + iθσµθ̄

)
= 0, D̄α̇θ = 0. (4.17)

Suppose Φ = Φ(y, θα). Then D̄Φ = 0 automatically. Since any function of θ can be expanded in
a series that truncates at θαθ

α, we can write Φ = ϕ(y) +
√
2θαψ

α(y) + θαθα︸︷︷︸
θ2

F (y). If we further

expand y, this is

Φ(y, θα) =ϕ(x) + iθσµθ̄∂µϕ+
1

4
θ2θ̄2∂2ϕ

+
√
2θψ − i√

2
(θθ)∂µψσ

µθ̄ + θ2F̄ . (4.18)

.

The transformation laws of the component fields arise from δΦ =
(
ϵαQα + ϵ̄α̇Q̄

α̇
)
Φ. Expanding

out the derivatives, one can show that

δϕ =
√
2ϵψ

δψ =
√
2ϵF +

√
2iσµϵ∗∂µϕ

∂F = i
√
2ϵ∗σ̄µ∂µψ. (4.19)

Spinors and scalars mix under the supersymmetry transformations! The chiral superfield Φ con-
tains both a complex scalar ϕ and a Weyl fermion ψ. We will see that the complex scalar F is
non-dynamical.

Holomorphic functions of chiral superfields are chiral, D̄Φn = 0, by the chain rule, a fact which
we will use shortly.

Vector superfields

If we impose a reality condition on superspace functions, V = V †, it is preserved by Q, Q̄. Carrying
out the expansion,

V = iχ− iχ† − θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D. (4.20)
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D will turn out to be non-dynamical. χ can be removed by a gauge transformation,

V → V + iΛ− iΛ† (4.21)

where Λ is itself a chiral superfield. This transformation generalizes A → A∂µλ. (Compare ∂µλ
with the θσµθ̄ term of Eq. (4.18).)

λ is a spin-1/2 “gaugino” and A is an abelian gauge field.

To construct the U(1) field strength, one builds

Wα = −− 1

4
D̄2DαV = −iλα + θαD − (σµν)βαFµνθβ + θ2σµ

αβ̇
∂µλ

∗β̇ (4.22)

in χ = 0 (Wess-Zumino) gauge.

A gauge transformation acts on charged fields as Φ→ e−iqΛΦ where, again, Λ is a chiral superfield.
Then Φ†eqVΦ is gauge invariant, for example. The gauge-covariant superderivative is

DαΦ = DαΦ +DαV Φ (4.23)

Building invariant actions

Under an ordinary infinitesimal translation, L → L + αµ∂
µL. The action

∫
d4xL is translation

invariant. Similarly, we will obtain supersymmetry-invariant actions by integrating operators built
out of superfields over superspace: ∫

d4xd4θ h(Φ,Φ†, V ) (4.24)

In slightly more detail: Acting on h with Q ∼ ∂θ − iθ̄∂µ and Q̄ ∼ −∂θ̄ + iθ∂µ, all the terms are of
the form ∫

d4θ∂θ(anything) = 0 or∫
d4x∂µ(anything) = 0 (4.25)

for fields vanishing fast enough at infinity. So
∫
d4xhθθθ̄θ̄ ≡

∫
d4θd4xh is susy-invariant. The θθθ̄θ̄

component of a superfield is generally called a “D-term”.

There is also a way to make an invariant with
∫
d2θ. Note that the θθ component of a chiral

superfield transfers into a total spacetime derivative:

δF = i
√
2ϵ∗σ̄µ∂µψ. (4.26)

So
∫
d2θ
∫
d4x(anychiralsuperfield) is invariant. Recalling that holomorphic functions of chiral

superfields are chiral superfields, we can write another invariant,
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∫
d2θ

∫
d4x f(Φ). (4.27)

The θθ component of a chiral superfield is generally called an “F-term”.

Most interesting Lagrangians are built out of three terms:

L = Lchiral kinetic + Lgauge kinetic + Lsuperpotential + cc. (4.28)

The first is a D-term and the second and third are F -terms.

Lchiral kinetic:∫
d4θ

∑
i

Φ†
ie
VΦi ∼

∫
d4θ (ϕ+ θθ̄∂ϕ+ . . . )†

(
1 + θθ̄A+ θθ̄θθ̄AA+ . . .

)
(ϕ+ θθ̄∂ϕ+ . . . )

(4.29)

so we can see there are D-terms like (∂ϕ)2, ∂ϕAϕ, ϕAϕA. These are building up |(∂+A)ϕ|2 – the
ordinary scalar kinetic term. Similarly for ψ.

Lgauge kinetic:

1

g2

∫
d2θWαW

α ∼ 1

g2

∫
d2θ FθFθ + · · · ∼ 1

g2
F 2 (4.30)

where here F stands for the gauge field strength. So we can see the F -term is building up the
ordinary gauge kinetic term.

Lsuperpotential: ∫
d2θW (Φ). (4.31)

d2θ is dimension 1, so W is dimension 3. Therefore the renormalizable superpotentials are of the
form

W =
1

2
mijΦiΦj +

1

3
ΓijkΦiΦjΦk (4.32)

(We will understand linear terms later.) As mentioned, the F -component of Φ is a non-dynamical
complex scalar. This is because

Lkinetic ∼
∫
d4θ (Φ→ θθF )†(Φ→ θθF ) ∼ F †F (4.33)

so there are no derivatives (no kinetic term) for F .

We also have, from Φ ∼ ϕ+ θψ + θ2F ,
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∫
d2θW =

∂W

∂Φi

∣∣∣∣
Φ=ϕ

Fi +
∂2W

∂Φi∂Φj

∣∣∣∣
Φ=ϕ

ψiψj. (4.34)

So the Fi-dependent terms in L are:

F ∗
i Fi +

∂W

∂Φi

Fi +
∂W ∗

∂ΦI
i

F ∗
i . (4.35)

We can integrate out Fi by solving the equation of motion:

δL
δF

= F ∗
i +

∂W

∂Fi
= 0

⇒Fi = −
(
∂W

∂Φi

)∗

. (4.36)

In a non-gauge theory, the F -dependent terms above are the only scalar potential terms. Substi-
tuting back, we have

VF (ϕ) =
∑
i

|Fi|2 =
∑
i

∣∣∣∣∂W∂ϕi
∣∣∣∣2 (4.37)

which is called the F -term potential.

In gauge theories there is also a scalar potential from gauge-auxiliary fields

1

g2

∫
d2θW 2

α →
1

g2

∫
d2θ (Da)2θ2 → 1

g2
DaDa,∫

d4θΦ+
i V Φi → ϕ†

iT
aϕi

∫
d4θ θθθ̄θ̄Da → ϕ†

iT
aϕiD

a. (4.38)

(Note: in a nonabelian gauge theory, V = V aT a.)

Da is nondynamical, so we can solve

δL
δDa

= 0→ Da = g2ϕ†
iT

aϕi (4.39)

which produces, upon substituting back in,

VD(ϕ) = g2

(∑
i

ϕ∗
iT

aϕi

)2

∼ D2 (4.40)
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and the total scalar potential has the form

V = |F |2 +D2 > 0. (4.41)

Thus the ground state energy is positive-definite. Another way to see it:
{
Qα, Q̄β

}
= 2Pµσ

µ

αβ̇
, and

so

Tr
(
σ̄0{Q, Q̄}

)
= 2TrPµσ

µσ̄0 (4.42)

⇒1

4

(
QαQ̄α̇ + Q̄α̇Qα

)
= P0 = E. (4.43)

We can take the expectation value of both sides to conclude

1

4

(
∥Q|0⟩

∥∥2+∥∥ Q̄|0⟩∥2) = ⟨E⟩ > 0 (4.44)

Moreover, Eground is an order parameter for SUSY breaking!

Q|0⟩ = 0→ SUSY unbroken, E = 0

Q|0⟩ ̸= 0→ SUSY spontaneously broken, E > 0 (4.45)

Now δψ ∼ ϵF, δλ ∼ ϵD and δψ = i{Q,ψ}, δλ = i{Q, λ}. So ⟨δψ⟩ ̸= 0 or ⟨δλ⟩ ̸= 0⇒ SSB
⇔ ⟨F ⟩, ⟨D⟩ nonzero.

SSB leads to a goldstone fermion, the goldstino.

We an already see susy’s impact on one hierarchy problem! If global SUSY ↔ Eground = 0, then
SUSY solves the c.c. problem. Unfortunately, it can’t be an exact symmetry.

4.1.2 Simple models

Wess-Zumino Model

Now let’s study the simplest 4D supersymmetric QFT, a model with one chiral ϕ and no gauge
multiplets. The superpotential is

W =
1

2
mϕ2 +

λ

3
ϕ3 (4.46)

so the scalar potential is (using ϕ to denote both the superfield and its lowest component):
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V = |F |2 =
∣∣mϕ+ λϕ2

∣∣2 (4.47)

from which we read off the scalar mass,

m2
ϕ = |m|2. (4.48)

The fermion terms in the Lagrangian are:

1

2

∂2W

∂ϕ2
ψψ + cc→ 1

2
mψψ + cc+ Yukawas (4.49)

So mψ = m as well. There is a Bose-Fermi degeneracy.

What are the symmetries? First, setm = 0. Then there is what is known as a U(1) “R symmetry.”
It is a symmetry under which the θ’s transform. Let Rθ = 1. Then

∫
dθ θ = 1⇒ Rdθ = −1, which

in turn implies

L ∼
∫
d2θW ⇒ RW = +2

W =
1

3
ϕ3 ⇒ Rϕ = 2/3. (4.50)

The superfield components transform as ϕ → ei2/3αϕ, ψ → ei(2/3−1)αψ, F → ei(2/3−2)αF . Now
a quadratic term in the superpotential would cary R(ϕ2) = 4/3, and therefore breaks the R
symmetry. It cannot be generated radiatively. If m ̸= 0, it is a spurion for R-breaking.

So this is a strange thing – the vanishing scalar mass is radiatively stable!

How does it work? For fermion, no diagram. For the boson,

diagram

We will see this extends beyond 1− loop and to finite m.

U(1) gauge theory

Next we study supersymmetric QED with two charged chirals, ϕ+, ϕ−. First, take W = 0.

Then, using

D ∼ (ϕ+)∗(1)ϕ+ + (ϕ−)∗(−1)ϕ− (4.51)

we find the scalar potential

V (ϕ±) =
1

2
D2 =

g2

2

(∣∣ϕ+
∣∣2 − ∣∣ϕ−∣∣2)2 . (4.52)
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Ground states have ⟨D⟩ = 0. But this does not imply ϕ+ = ϕ− = 0 : we can have any ϕ+ =
v, ϕ− = veiα, up to a gauge transformation.

Thus we have a continuous infinity of distinct, degenerate vacua.

Pick some v. Then we have SSB a la Higgs.

∑
+,−

|(∂µ + igAµ)ϕ|2 → 2g2v2A2 (4.53)

so

m2
A = 4g2v2. (4.54)

The gauge interactions also include∫
d4θ ϕ+eV ϕ ⊃

∫
d4θ (θ̄ψ†)(θ2θ̄λ†)(ϕ) (4.55)

which are mixed gaugino-fermion yukawa couplings. Upon Higgsing, these terms give rise to
fermion Dirac masses,

√
2gvλ (ψϕ+ − ψϕ−) . (4.56)

The matter fermion and the gaugino pair up to make a massive vector multiplet.

Due to the D-flat directions in the scalar potential, parametrized by the arbitrary magnitude of
v, there is also a massless multiplet unconnected to the Goldstone phenomenon!

Fluctuaations in v don’t see any potential. The linear combination δϕ++δϕ− is massless. Likewise,
the phase α is undetermined. Together, these make up a massless complex scalar. Furthermore
ψϕ+ + ψϕ− is also massless. So together they make up a whole massless chiral multiplet.

It had to be so: SUSY is unbroken and all components of a multiplet must share the same mass,
because of the algebra: [

P 2, Q
]
= 0 (4.57)

so one scalar flat direction ⇒ a whole massless multiplet.

Such multiplets make up what is called the moduli space. It can always be parametrized by gauge
invariant operators, in this case

ϕ+ϕ− ∼= v2 + v
(
δϕ+ + δϕ−) . (4.58)
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4.1.3 Non-renormalization theorems

A more general supersymmetric EFT takes the form

L =

∫
d4θ K(ϕi, ϕ

†
i )︸ ︷︷ ︸

Kahlerpot′l

+

∫
d2θ W (ϕi)︸ ︷︷ ︸

superpot′l

+

∫
d2θ fa(ϕi)W

2
α︸ ︷︷ ︸

gauge coupling fn

+cc (4.59)

Some important results:

• W is not corrected in perturbation theory beyond tree level.

• f is renormalized only at 1 loop.

The original proofs were diagrammatic, but in most cases simpler proofs we available, based on
holomorphy and spurious symmetries. We’ll illustrate the ideas.

First, consider the massive WZ model. Take Rϕ = 1. Then Rλ = −1, and we can treat λ
as a spurion for R-breaking. Now consider possible renormalizations of m. λ∗λ could appear
consistent with the R-symmetry. But if we promote λ to the vev of a background chiral superfield,
λ→ λ(y, θ), it is clear that λ∗ cannot appear: W must be holomorphic in superfields.

What about other combinations? λλ has the wrong R-charge, (λ∗λ)λ is non-holomorphic, etc.
Dimension 5 operators? kϕϕϕϕ looks ok, if k ∼ λ2. But actually there is another symmetry
(non-R ): ϕ→ eiβϕ. Under this symmetry m and λ are spurions of charge qm = −2 and qλ = −3.
The most general term in the effective superpotential would have the form

mϕ2F

(
λϕ

m

)
(4.60)

for general F , because the combination λϕ
m

is neutral under both symmetries.

Now the coefficient of of ϕn ∼ λn−2

mn−4 . n = 8 : d6

m4 . But these just correspond to tree graphs!
E.g. diagram These are not part of the effective action. All higher orders in λ (loop graphs) are
inconsistent with the form mϕ2F

(
λϕ
m

)
. We conclude that

Weff = Wtree (4.61)

is exact.

K is not holomorphic, and can have general λ∗λ renormalizations.

Now consider the gauge coupling function. Again we will treat g−2 as part of a chiral field.
Define

S =
8π2

g2
+ ia+O(θα). (4.62)

The imaginary part of the lowest component, a, couples to FF̃ . The real part, ∼ 1/g2, couples to
FF .
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In perturbation theory, a → a + c does not affect physics, because FF̃ is a total derivative. The
effective action should reflect this as well.

Now the gauge coupling function is holomorphic, so

f(g2)→ f(S) = S + const. (4.63)

This is the only form consistent with the shift symmetry of a = Im(S) in perturbation theory.

Now, at one loop,

8π2

g2(µ)
=

8π2

g2(M)
+ β log µ/M. (4.64)

So the constant in f can get renormalized at one loop. But higher terms are O(g2) and are
forbidden.

We will use the nonrenormalization of W to solve the electroweak hierarchy problem in part. But
it will not be exact. To understand this, we have to discuss susy breaking. If realized in nature
at all, susy must be broken, because we do not observe scalar electrons, etc,

So we turn now to the subject of susy breaking.

4.1.4 SUSY Breaking

O‘Raifeartaigh Models

Simple example of a spontaneous SUSY-breaking model:

W = λA
(
X2 − µ2

)
+mBX

FA =
∂W

∂A
= λ

(
X2 − µ2

)
FB =

∂W

∂B
= mX

FX =
∂W

∂X
= 2λAX +mB. (4.65)

From these F -terms we see that FA = 0 and FB = 0 are incompatible with each other

Rather than workwith SSB models, it is convenient to introduce explicit susy breaking in a con-
trolled, or “soft” way. Take the WZ model with W = 1

3
λΦ3, K = Φ†Φ.

SUSY implies mψ = mϕ (and both vanish in this model), and W is not renormalized, so no mass
term mΦΦ is generated. In particular the scalar is massless to all orders in the SUSY limit. This
is surprising from the point of view of generic EFT! Now add an explicit SUSY breaking “soft”
scalar mass to the potential:
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Vϕ = |Fϕ|2 +m2
soft |ϕ|2. (4.66)

Since susy is broken, the nonrenormalization theorems fail. What is ∆m2 ?

FΦ = ∂W/∂Φ = λϕ2 ⇒ V = λ2|ϕ|4 +m2
soft |ϕ|2. (4.67)

We also have the interaction
∫
d2θW ⊃ λψψϕ. So there are the following self-energy contribu-

tions:

diagram

∼ −λ
2Λ2

16π2
− λ2m2

soft

16π2
log (Λ/ms) + . . . (4.68)

diagram

∼ λ2Λ2

16π2
(4.69)

The sum is

−λ
2m2

soft

16π2
log(Λ/mS) (4.70)

So the far-UV sensitivity, the quadratic divergence ∼ Λ2 still cancels! But there is a non-canceling
part that “knows” about SUSY breaking. The renormalization proportional to m2

soft is still small
if m2

soft is small. Dimensional analysis: this mass squared was a spurion for susy breaking, so it
must appear in all susy breaking effects: no room for Λ2, except in logarithms.

More generally, scalar masses are not sensitive to arbitrary UV scales if the sources of susy break-
ing are parametrized by dimensionful soft terms:

Soft scalar masses: m2|ϕ|2 +B(ϕϕ+ cc)
Gaugino mass: mλλλ+ cc (splits gaugino from Aµ )
trilinear scalar couplings: Γϕϕϕ+ cc

Hard susy breaking, on the other hand, generates UV sensitivity. E.g., suppose

L ∼ −λ2|ϕ|4 − λ̃ϕψψ + cc. (4.71)

Here hard susy breaking is present whenever the dimensionless couplings λ and λ̃ are unequal.
The sum of the one-loop scalar self energy diagrams is of order

∆m2 ∼ (λ̃2 − λ2)
16π2

Λ2 (4.72)

So the nonrenormalization theory is badly broken in this case.

Let’s finish by briefly discussing extending the SM to a minimal supersymmetric standard model
(MSSM).
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