
Things to keep in mind so that your scientific writing is logically structured, precise, and concise:

# (1). Use paragraphs to maintain a logical structure

Every paragraph should contain roughly one idea + supporting evidence for that idea, if possible, and *this idea should be presented as concisely as possible* 



# Celia's foolproof, four-step SEES\* method to crank out science writing:

- 1. State the topic sentence first
- 2. Explain it
- 3. Give an example, expand, or present evidence
- 4. Summarize it in a way that leads logically to the next topic sentence

\*State → Explain → Exemplify → Summarize

Tip: Use the same construction paradigm for paragraphs, subsections, and sections of your paper

# Writing Workshop #1: Paragraph Structure

The high-pressure and temperature phase transition of dioxides is of fundamental interest in solid-state physics, chemistry, and geosciences. In many dioxides, TiO<sub>2</sub> is well known as an important wide-gap oxide semiconductor with various industrial applications such as electrochemical solar cells and photocatalyst due to the characteristic high refractive index [1–9]. Apart from those technological aspects, high-pressure transformations of TiO<sub>2</sub> have attracted special attention as a low-pressure analog of SiO<sub>2</sub>, the most abundant component of the Earth's mantle. A number of experimental and theoretical studies have revealed many crystalline polymorphs of TiO<sub>2</sub> at high pressures and high temperatures [10–14]. At ambient conditions, rutile is the most stable phase of TiO<sub>2</sub>. Anatase and brookite are also known as natural minerals. All of these phases transform to an  $\alpha$ -PbO<sub>2</sub>-type, to an orthorhombic-l-type, then finally to a cotunnite-type structure at approximately 50 GPa [11,14]. The cotunnite-type polymorph is identified as the highest-pressure phase, as in many dioxides [15]. Although the analogy of the phase change to the cotunnite structure was applied to TiO<sub>2</sub> [16,17], a very recent ab initio study predicted a different phase transition from the pyrite-type structure to an unexpected Fe<sub>2</sub>P-type structure (hexagonal, space group *P*62*m*) (Fig. 1) at 690 GPa, bypassing the cotunnite-type phase stability at low temperature [18]. Since no dioxides or difluorides with this crystal structure were reported, physical and chemical properties of this new class of oxide are still unknown. Although the extremely high transition pressure predicted in SiO<sub>2</sub> seems unreachable in the laboratory, TiO<sub>2</sub> shows significantly lower transition pressures. For instance, the  $\alpha$ -PbO<sub>2</sub> phase stabilizes at ~10 Gpa in TiO<sub>2</sub>, while the same phase at 100 GPa in SiO<sub>2</sub>. High-pressure behavior of TiO<sub>2</sub> is therefore a key to understanding the rich polymorphism in the metal dioxide systems, in particular, the post-cotunnite phase relations. However, all the studies performed on TiO<sub>2</sub> were limited below 100 GPa, and no post-cotunnite phase has been identified. In this study, we investigate the applicability of the Fe<sub>2</sub>P-type structure to TiO<sub>2</sub> both theoretically and experimentally.

# **Topic sentences**

The high-pressure and -temperature phase transitions of dioxides are of fundamental interest in solid-state physics, chemistry, and the geosciences. In particular, because of its high refractive index [1-9], TiO<sub>2</sub> is an important wide-gap oxide semiconductor for various industrial applications, such as electrochemical solar cells and photocatalysts. Additionally, high-pressure transformations of TiO<sub>2</sub> have attracted special attention as a low-pressure analog of SiO<sub>2</sub>, the most abundant component of the Earth's mantle.

Previous experimental and theoretical studies reveal many crystalline polymorphs of TiO<sub>2</sub> at high pressures and high temperatures [10–14]. Rutile is the most stable phase of TiO<sub>2</sub> at ambient conditions, but TiO<sub>2</sub> exhibits a structural phase transition from orthorhombic-I-type to cotunnite-type structures at approximately 50 GPa [11,14]. Cotunnite was previously reported to be the highest pressure phase of TiO<sub>2</sub> [15]. However, a recent *ab initio* study of TiO<sub>2</sub> predicted a transition from the pyrite-type structure to an Fe<sub>2</sub>P-type structure (hexagonal, space group *P*62*m*) (Fig. 1) at 690 GPa. This transition bypasses the cotunnite-type phase stability at low temperatures [18]. Unfortunately, because no dioxides or difluorides with the high pressure Fe<sub>2</sub>P-type crystal structure have been reported, the physical and chemical properties of the high pressure structural phase of oxides are still unknown.

Studying the high-pressure structural phases of  $TiO_2$  is key to understanding the rich polymorphism in the metal dioxide systems.  $TiO_2$  exhibits significantly lower transition pressures to post-cotunnite phases than other dioxides. For instance, the  $\alpha$ -PbO<sub>2</sub> phase stabilizes at ~10 GPa in  $TiO_2$ , while the same phase stabilizes at 100 GPa in  $SiO_2$ . However, all the studies performed on  $TiO_2$  have been limited to 100 GPa, and as yet no post-cotunnite phases have been identified. In this study, we theoretically and experimentally investigate the high pressure structural phases of  $TiO_2$ , in particular to determine if this material exhibits a  $Fe_2$ P-type structure at high pressures.

The high-pressure and -temperature phase transitions of dioxides are of fundamental interest in solid-state physics, chemistry, and the geosciences. In particular, because of its high refractive index [1-9], TiO<sub>2</sub> is an important wide-gap oxide semiconductor for various industrial applications, such as electrochemical solar cells and photocatalysts. Additionally, high-pressure transformations of TiO<sub>2</sub> have attracted special attention as a low-pressure analog of SiO<sub>2</sub>, the most abundant component of the Earth's mantle.

Transition sentences

Previous experimental and theoretical studies reveal many crystalline polymorphs of TiO<sub>2</sub> at high pressures and high temperatures [10–14]. Rutile is the most stable phase of TiO<sub>2</sub> at ambient conditions, but TiO<sub>2</sub> exhibits a structural phase transition from orthorhombic-I-type to cotunnite-type structures at approximately 50 GPa [11,14]. Cotunnite was previously reported to be the highest pressure phase of TiO<sub>2</sub> [15]. However, a recent *ab initio* study of TiO<sub>2</sub> predicted a transition from the pyrite-type structure to an Fe<sub>2</sub>P-type structure (hexagonal, space group *P*62*m*) (Fig. 1) at 690 GPa. This transition bypasses the cotunnite-type phase stability at low temperatures [18]. Unfortunately, because no dioxides or difluorides with the high pressure Fe<sub>2</sub>P-type crystal structure have been reported, the physical and chemical properties of the high pressure structural phase of oxides are still unknown.

Studying the high-pressure structural phases of  $TiO_2$  is key to understanding the rich polymorphism in the metal dioxide systems.  $TiO_2$  exhibits significantly lower transition pressures to post-cotunnite phases than other dioxides. For instance, the  $\alpha$ -PbO<sub>2</sub> phase stabilizes at ~10 GPa in  $TiO_2$ , while the same phase stabilizes at 100 GPa in  $SiO_2$ . However, all the studies performed on  $TiO_2$  have been limited to 100 GPa, and as yet no post-cotunnite phases have been identified. In this study, we theoretically and experimentally investigate the high pressure structural phases of  $TiO_2$ , in particular to determine if this material exhibits a  $Fe_2$ P-type structure at high pressures.

The high-pressure and -temperature phase transitions of dioxides are of fundamental interest in solid-state physics, chemistry, and the geosciences. For example,...

Because of its high refractive index [1-9], TiO<sub>2</sub> is a particularly important widegap oxide semiconductor for various industrial applications, such as electrochemical solar cells and photocatalysts. Additionally, high-pressure transformations of TiO<sub>2</sub> have attracted special attention as a low-pressure analog of SiO<sub>2</sub>, the most abundant component of the Earth's mantle.

Transition sentences

Previous experimental and theoretical studies reveal many crystalline polymorphs of TiO<sub>2</sub> at high pressures and high temperatures [10–14]. Rutile is the most stable phase of TiO<sub>2</sub> at ambient conditions, but TiO<sub>2</sub> exhibits a structural phase transition from orthorhombic-I-type to cotunnite-type structures at approximately 50 GPa [11,14]. Cotunnite was previously reported to be the highest pressure phase of TiO<sub>2</sub> [15]. However, a recent *ab initio* study of TiO<sub>2</sub> predicted a transition from the pyrite-type structure to an Fe<sub>2</sub>P-type structure (hexagonal, space group *P*62*m*) (Fig. 1) at 690 GPa. This transition bypasses the cotunnite-type phase stability at low temperatures [18]. Unfortunately, because no dioxides or difluorides with the high pressure Fe<sub>2</sub>P-type crystal structure have been reported, the physical and chemical properties of the high pressure structural phase of oxides are still unknown.

Studying the high-pressure structural phases of  $TiO_2$  is key to understanding the rich polymorphism in the metal dioxide systems.  $TiO_2$  exhibits significantly lower transition pressures to post-cotunnite phases than other dioxides. For instance, the  $\alpha$ -PbO<sub>2</sub> phase stabilizes at ~10 GPa in  $TiO_2$ , while the same phase stabilizes at 100 GPa in  $SiO_2$ . However, all the studies performed on  $TiO_2$  have been limited to 100 GPa, and as yet no post-cotunnite phases have been identified. In this study, we theoretically and experimentally investigate the high pressure structural phases of  $TiO_2$ , in particular to determine if this material exhibits a  $Fe_2$ P-type structure at high pressures.

# Write with purpose: what do you want your paragraph to do?

## **Purpose**

# Paragraph Breakdown

## **ARGUE**

**CLASSIFY** 

A paragraph can be used to argue for or against a point of view. Each paragraph should focus on developing one main point for or against the position.

## **Topic Sentence -**

introduce the argument and position for or against

#### Supporting Sentences -

develop the reasons for your position and presents facts and examples to support this; address any counter-arguments

# Conclusion - restate position

#### Useful transitional words and phrases

For giving reasons: first, second, third, another, next, last, finally, because, since, for For counter-argument: but, however, of course, nevertheless, although, despite

For concluding: therefore, as a result, in conclusion, thus

# Topic Sentence -

Introduce the items being classified and/or the categories for classification

#### Supporting Sentences -

provide more information about the items, and how their characteristics fit into a particular category

#### Conclusion -

repeat what classification the item or category belongs to

#### Useful transitional words and phrases

This paragraph structure can be used to organise information, items, or

organisation of information will depend

on your purpose and subject area.

ideas into categories. The

Can be divided, can be classified, can be categorised the first/second/third

# **COMPARE or CONTRAST**

Use this paragraph structure if you need to examine similarities and differences. This paragraph structure is useful for literature reviews and reports.

#### Topic Sentence -

introduce the items to be compared or contrasted, noting similarity or difference

#### Supporting Sentences -

identify, describe, and discuss any similarities or differences

#### Conclusion -

summarise and interpret the similarities and differences discussed

#### Useful transitional words and phrases

For comparison: similar to, similarly, in the same way, like, equally, again, also, too

For contrast: in contrast, on the other hand, different from, whereas, while, unlike, but, although, however, conversely, yet, unlike

From: Centre for Teaching and Learning, University of Newcastle

# DEFINE

Use this paragraph structure when you need to define a concept, and demonstrate an understanding of how it relates to a particular context or discipline.

#### Topic Sentence -

provide a simple definition of a concept

#### Supporting Sentences –

provide more information through description, explanation, and examples; makes links between the concept and how it applies to a particular context or field

#### Conclusion -

not necessary; can transition to the next paragraph if related to the concept

## Useful transitional words and phrases

for example, for instance, an illustration of this, another example, firstly, the first step, secondly, the second step, finally, the final step

## **DESCRIBE**

Use this paragraph structure if you are asked to provide information about something.

## Topic Sentence -

introduce the item to be described

#### Supporting Sentences -

provide specific and detailed information about the item's characteristics and functions

#### Conclusion -

not necessary; can transition to the next paragraph if related to the item described

## Useful transitional words and phrases

In the foreground, in the middle distance, in the background, in the far distance, next to, near, up, down, between, beneath, above, below, on top of, beneath, left/right, centre, front, back, middle, in the interior, on the exterior, on the inside, on the outside, surrounding

# **EXPLAIN**

Use this paragraph structure if you need to explain how something works or the steps in a process.

#### Topic Sentence -

introduce what will be explained

#### Supporting Sentences -

explain each of the steps involved in the process, in the order that the steps are to be performed. Includes information about how something happens and why

#### Conclusion -

provide a brief summary of the process

## Useful transitional words and phrases

At first, initially, the first step, while, at the same time, the second/third/next step, after, next, finally, eventually, the final/last step.

From: Centre for Teaching and Learning, University of Newcastle