Lectwe 4 Remindes: Hw 1 posted, Dre $2 / 6$ - office hows manlays 4.5

Recaps Representation P ot a greup G on a vecter spao V
hono mophen $P: G \rightarrow O(V)$
$T_{\text {group of }}$ untary eperators on V

$$
g \rightarrow \rho(g) \cdot \cup(V)
$$

Invariant subspace: $W \subset V$ s.t. $e(g) W \subset W$
if a representation hal an invariant sulspace then we con choose a bags where for every 8 ,

$$
\begin{aligned}
& V=W \oplus W^{+}{ }^{\top} \rho_{\text {is }}
\end{aligned}
$$

If e has no invariant subspaces (other than $\{0\}$ and V) then we say p is irreducible

Examples let 6 be arg group I can always construct a special D rep $\quad V=\mathbb{C}$

$$
\begin{aligned}
& U(V)=\left\{e^{(\phi}, \phi \in\left[0, v_{i j}\right)\right\} \\
& \text { p; } g \rightarrow e^{i .0}=1=\rho(g)-\text { trival represertation }
\end{aligned}
$$

Examplei consider two spin- $\frac{1}{2}$ particles

$$
V=\{|\hat{\imath} \hat{\imath}\rangle,|\downarrow \hat{\imath}\rangle,|\hat{\imath} \downarrow\rangle,|\downarrow \downarrow\rangle\}
$$

under a rotation (\hat{n}, θ) eash perticle trasforns $e_{i}((\hat{n}, \theta))=e^{-\frac{i}{2} \hat{n} \cdot \vec{\sigma}}$
the set of 2 spin- $\frac{1}{i}$ pooticles trasforms in a representation trasforms in a represectation
$\rho((\hat{n}, \theta))=\rho_{\frac{1}{2}}((n, \theta)) \otimes \rho_{\frac{1}{2}}((\hat{n}, \theta))$
there is a nontrivial invarient subspace

$$
\begin{aligned}
& W=\left\{\frac{1}{\sqrt{2}}(|\hat{\Gamma}\rangle-|-1 \hat{\mid}\rangle)\right\}-\operatorname{sps} 0 \\
& \text { Sulspace } \\
& \left.W^{\perp}=\left\{|\hat{\imath}\rangle, \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+\mid \downarrow \hat{\rangle}),|\downarrow|\right\rangle\right\}-s p n-1 \\
& \rho((\hat{n}, \theta))=w\left(\begin{array}{l|l}
w & w^{\perp} \\
1 & 0 \\
\hline 0 & 0 \\
\hline & 0 \\
0 & e^{-i n \cdot l} \theta \\
0 &
\end{array}\right) \\
& \text { sulspac } \\
& \vec{L} \text { - spr- }-1 \text { matrices }
\end{aligned}
$$

Clebsch - Gordan coeffirients - bases for the invariant subspaces

Schur's Lemma (Part I) Consider a group G and two irreducible representations

$$
\begin{aligned}
& e_{1}: G \rightarrow U\left(V_{1}\right) \\
& e_{2}: G \rightarrow O\left(V_{2}\right)
\end{aligned}
$$

If we have a matrix $H: V_{1} \rightarrow V_{2} \quad\left(H V_{1}=v_{2}\right)$ such that $H \rho_{1}(g)=\rho_{2}(g) H$ for all $g \sigma 6$ then either; © $H=O \checkmark$ or
(2) His invertible

$$
\text { Proof: lets look at } \operatorname{ker} H=\left\{v o V_{1} \mid H v=0\right\}
$$

If $v \in$ ker H, consder $\rho_{1}(g) v$

$$
H e_{1}(g) \vec{v}=e_{2}(g) \underline{H} \vec{v}=0
$$

$\Rightarrow P_{1}(g) \vec{v} \in$ ker $H \rightarrow$ kerH is an invariont subspere of P_{1}

$$
\begin{aligned}
& \begin{array}{l}
\text { ker } H=V_{1} \rightarrow H=0 \text { is the aro matrx } \\
\text { or } \\
\text { ker } H=\{0\} \rightarrow H v_{1}=H v_{2} \\
H \text { is ouetome }
\end{array} \Rightarrow H\left(v_{1}-v_{2}\right)=0 \\
& \\
& \\
& \\
& \Rightarrow v_{1}-v_{2} \in \operatorname{ker} H \\
& v_{1}=v_{2}
\end{aligned}
$$

Now lets look at $I_{m} H=\left\{w \in V_{2} \mid w=H v_{1}\right.$ for save $\left.V_{1} \theta V_{1}\right\}$

$$
\begin{aligned}
& \text { if } w \in I_{m} H \quad w=\dot{H} v_{1} \\
& e_{2}(g) w=\rho_{2}(g) H v_{1}=H e_{1}(g) v_{1} \because e_{2}(g) w \in I_{m} H
\end{aligned}
$$

\Rightarrow In H is an invariant subspace of P_{2}

$$
\begin{aligned}
& P_{2} \text {,reducible } \Rightarrow \operatorname{In} H= \begin{cases}\vec{O} \leftarrow & H=0 \\
V_{2} \leftarrow & H \text { is subjective } \\
\text { "onto" }\end{cases} \\
& \Rightarrow H=0
\end{aligned}
$$

H is one-to-are and subjective \rightarrow invertible
Port 2: Consider a group 6 one irreducible representation

$$
e_{1}=e_{2}=\rho \text { on a vector space } V_{1}
$$

$$
H: V_{1} \rightarrow V_{1} \quad H e_{1}(g)=P_{1}(g) H \quad([H, P(g)]=0)
$$

then either $\left\{\begin{array}{l}H=O \\ H \text { is ineritible } \rightarrow \lambda I_{\kappa_{\text {idellity }}} \lambda \in \mathbb{C}\end{array}\right.$
Pf: suppose $H_{1 s}$ averthble. Since H, is a finte-dim. Square ratinx * has at least one eigarvector \vec{v} and eigenvalue λ Cosider $B=H-\lambda I d$
$[\rho(s), B] \Rightarrow B$ is estler nivertible or O by Sohw's lemna po 1
but $B \vec{v}=0 \Rightarrow \operatorname{ker} B \neq\{\theta\} \Rightarrow B_{\text {is not invealbe }}$

$$
B=0 \Rightarrow H=\lambda I d
$$

This agdres to QM: let G be the symmetry group of our Hanltasen H
$\left\{\left|\Psi_{i}\right\rangle, i=1, \ldots N\right\}$ Hoasform in an ir ep Q of 6

$$
\begin{aligned}
& U_{g}\left|\psi_{i}\right\rangle=\sum_{j}\left|\psi_{j}\right\rangle \rho_{j i}(g) \text { sit. } \rho_{j}(g) \text { is an } \\
& U_{g}^{+} H U_{g}=H
\end{aligned}
$$

$[H]_{i j}=\left\langle\Psi_{i}\right| H\left|\Psi_{j}\right\rangle$-matrix elements of the Hamiltainen

$$
\begin{aligned}
{\left[H_{i j}\right] } & =\underbrace{\left\langle\psi_{j}\right| U_{g}^{+} H\left[U_{g}\left|\psi_{j}\right\rangle\right]}_{j} \\
& =\sum_{k e} e_{i k}^{+}(g)[H]_{k e} e_{e j}(g) \\
{[H] } & \left.=e^{+}(g)[H]\right](g) \Rightarrow[[H, e(g)]=0
\end{aligned}
$$

\Rightarrow Schw's lemma $\Rightarrow[H]_{i j}=\delta_{i j} E_{n}$
\rightarrow States tranfformingin an irrep of the spmmetiy grap are degererate

Examples Non-relativistic hydrgen atom
$\left\{\left|\cap l M_{l}\right\rangle \mid M_{l}=-l, \ldots l\right\}$ tronsform in the
spin-l representation of the
retation group
$\left\langle n l M_{z}\right| H\left|n l M_{z}^{\prime}\right\rangle=E_{n l} \delta_{M_{z 1} M_{z}^{\prime}}$ enegg,es are independit of M_{z}

Part 2.5 of Schur's lemma: G a group

$$
\begin{aligned}
& e_{1}: G \rightarrow U\left(V_{1}\right) \quad \text { fintedimensianal, } \\
& e_{i} ; G \rightarrow U\left(V_{2}\right) \quad \text { sredacible }
\end{aligned}
$$

$$
H: V_{1}-\partial V_{2} \quad e_{2}(g) H=H e_{1}(g)
$$

If H is inveritlle, then $P_{1} \approx P_{2} P_{1}$ is untarily equvalat to P_{2}
Pf: $\mathrm{e}_{2}(g) H=H \rho_{1}(g)$ co
$\mathrm{H}^{+}, V_{2} \rightarrow V_{1}$ (ble of the transpose)

$$
H^{t} \rho_{2}^{\dagger}(g)=\rho_{1}^{t}(g) H^{\dagger}
$$

$H^{+} e_{2}\left(s^{-1}\right)=e_{1}\left(g^{-1}\right) H^{+} \rightarrow H^{+}$satisfies Schuc's leama Consider $H^{t} H: V_{1} \rightarrow V_{1}$

$$
\left[H^{+} H, Q_{1}(g)\right]=O \rightarrow \text { Schw's Lemina } 2 \rightarrow H^{+} H=\lambda I d
$$

$H_{\text {invertlle }} H^{+}=\lambda H^{-1}$

$$
\begin{aligned}
& U=\frac{1}{\sqrt{\lambda}} H \\
& U^{+}=\frac{1}{\sqrt{\lambda}} H^{+}=\sqrt{\lambda} H^{-1}=U^{-1}
\end{aligned}
$$

$$
\begin{aligned}
H\left(\rho_{1}(g)\right. & =e_{2}(g) H \\
\Rightarrow P_{1}(g) & =H^{-1} e_{2}(g) H \\
& =U^{+} e_{2}(g) U \Rightarrow P_{1} \approx \rho_{2}
\end{aligned}
$$

