Lecture 5 Annamementi Bravais lattices \& compatible ot grapes are an en, witipeedia.arg/wikikngablese

- Recapi $H\left|\psi_{n k}\right\rangle=E_{n k}\left|\psi_{n k}\right\rangle$
$H=\frac{p^{2}}{2 m}+V(\vec{r}) \quad V(r)$ is invariant under the symmetries et a space gre G w/ Bravos lattice T

$$
\forall \vec{t} \in T \quad U_{\vec{t}}\left|\psi_{n k}\right\rangle=e^{-i \vec{k} \cdot \vec{t}}\left|\psi_{n k}\right\rangle
$$

$\vec{k} \in$ lat Brillown Zane

Represectition e of a grane $G \quad e: G \rightarrow \cup(V)$ on some vertar spave V s.t.

$$
\rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right)
$$

Schematially

Save subspace of Bloch states
 $\left\{\left|\psi_{k k}\right\rangle\right\}$

Example of a representation: $\vec{b} \in T$ Bravarslathie timaditios

$$
V=\left\{\left|\Psi_{n k}\right\rangle_{, n=\hbar}, \ldots N\right\}
$$

$$
\begin{aligned}
& e_{k}^{(\vec{t})}=U_{\vec{t}}=e^{-i \vec{k} \cdot \vec{t}} \delta_{n m}
\end{aligned}
$$

$$
\begin{aligned}
& e_{k}^{\left(\vec{t}_{1}+\vec{t}_{2}\right)}=e^{-i \vec{k} \cdot\left(\vec{b}_{1}+\vec{t}_{2}\right)} \delta_{n M} \\
& =\sum_{l}^{-i \vec{k} \cdot \vec{t}} \delta_{n l} e^{-i \vec{k} \cdot \vec{l}_{2}} \delta_{l n}=\rho(\vec{t}) \rho\left(\vec{t}_{l}\right)
\end{aligned}
$$

Q : is P_{k} reducible or sreducible?

$$
P_{k}(\vec{t})=\left(\frac{1}{l} 1\right.
$$

$\left|\psi_{n k}\right\rangle$ is an invasiout subspace for each

$$
\left.n \quad P_{k}(\vec{t})\left|\Psi_{n k}>\propto\right| \Psi_{\wedge k}\right\rangle
$$

the irreducible rep is just $e^{-k \cdot \vec{t}}(1)$

Schar's Lemma: Lets take a group G, and two irreducible representations $e_{1}: G \rightarrow O\left(V_{1}\right)$

$$
\mathrm{e}_{2} ; G \rightarrow O\left(V_{2}\right)
$$

If we hare a linear rap (matrix) $A: V_{1} \rightarrow V_{2}$ such that $\quad A e_{1}(g)=e_{2}(g) A \quad \forall g \in G$
Then esther A is invertible or $A=0$
pi lets consider $K=\left\{v \in V_{1} \mid A V_{1}=0\right\}$ suppose $w \in K \quad W \neq 0$

$$
A e_{1}(g) w=e_{2}(g) A w=0 \text { forall } g \in 6, w \in K
$$

but this means $\rho_{1}(g) K \subset K$ for all $g \in G$
$\rightarrow K$ is an invariant subspace of P_{1} repent son er
\rightarrow since e_{1} is ir educible either $K=\varnothing \rightarrow A_{\text {is inkwille }}$

$$
V_{K}=V_{1} \rightarrow A=0
$$

Corrolary: Suppose that $C_{1}=e_{2}$ then $\left[A_{1} P_{1}(g)\right]$

$$
\Rightarrow A=\lambda I d
$$

pf: A is a square matrix, so it has an ergenvahe
λ and an eigenvector V

$$
\begin{aligned}
& \text { s.f. } A v=\lambda v \\
& B=A-\lambda I d \\
& B r=0 \quad \text { ard }[B, \rho(g)]=0 \mathrm{Vs} \\
& \rightarrow \text { Schuss lemma } \Rightarrow B=0 \\
& \rightarrow A=\lambda I d
\end{aligned}
$$

What does this corrolary mean for QMi
$H\left|\Psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle$ if we have some group G of symmetries then lets consider
$\lambda\left\{\left|\psi_{i}\right\rangle\right\}$ a subset of Bloch states that Lranformin a irreducible representation (ire p) $\operatorname{of} G$

$$
\begin{aligned}
& \quad U_{g}\left|\psi_{i}\right\rangle=\sum_{j}\left|\psi_{j}\right\rangle \rho_{j i}(g) \\
& \begin{array}{l}
U_{g}^{t} H U_{g}=H
\end{array} \\
& {[H]_{i j}=\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle} \\
& =\left\langle\psi_{j}\right| U_{g}^{t} H U_{g}\left|\psi_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k \cdot l} e_{i k}^{+}(g)[H]_{k e} \rho_{e j}(g) \\
& {[[H], \rho(g)]=0} \\
& \rightarrow[H]_{i j}=E \delta_{1 j} \text { by Schas's lemma }
\end{aligned}
$$

States that transform in ireeps of G are degeomente)
of we can find repps of space groups, then we con know about symmetry enforced degenerates
betrneen Bloch States.
Chavacter theory: we can characterne represutatans by bokng at traces ef ratries

Deff x_{e} a the charalter of representation p of $p p$

$$
x_{e}(g)=\operatorname{tr} \rho(g)
$$

Some mportant propestres of choracters:
(1) $X_{e}\left(g, g_{2} g_{1}^{-1}\right)=\operatorname{tr} \rho\left(g_{1} g_{2} g_{1}^{-1}\right)$

$$
\begin{aligned}
&=\operatorname{tr}\left[\rho\left(g_{1}\right) \rho\left(g_{2}\right) \rho\left(g_{1}^{-1}\right)\right] \\
&=\operatorname{tr}\left[\rho\left(g_{1}^{-1}\right) \rho\left(g_{1}\right) \rho\left(g_{2}\right)\right] \\
&=\operatorname{tr}\left[\rho\left(g_{2}\right)\right] \\
&=X_{e}\left(g_{2}\right) \\
& \text { Conjugacy class }\left((g)=\left\{h g h^{-1} \mid h \in G\right\}\right.
\end{aligned}
$$

Characters are constant on conjugacy classes
(2) $\rho_{3}=\rho_{1} \oplus \rho_{2}$ i.e. $\rho_{3}(g)=\left(\begin{array}{ll}e_{1}(g) & 0 \\ 0 & e_{2}(\rho)\end{array}\right)$

$$
\begin{aligned}
& x_{e_{3}}(g)=\operatorname{tr}\left[e_{3}(g)\right]=\operatorname{tr}\left[\left(\begin{array}{cc}
e_{1}(g) & 0 \\
0 & e_{2}(g)
\end{array}\right)\right] \\
&=\operatorname{tr} e_{1}(g)+\operatorname{tr} e_{2}(g) \\
&=x_{e_{1}(g)+x_{e_{2}}(g)} \\
& x_{e_{1} \oplus e_{2}}=x_{e_{1}}+x_{e_{2}}
\end{aligned}
$$

(3) If C_{1} and e_{2} are isomorphic in the sense that $U e_{1}(g) U^{\dagger}=e_{2}(g)$ then $X_{e_{1}}=X_{e_{2}}$

Lets do a quick exande
et group $6 \mathrm{~mm} \quad G=\left\langle C_{6 z}, M_{x}\right\rangle$
Lets look at the representations:
(1) Trivial representation $\rho_{0} \rho_{0}\left(C_{6}\right)=1=\rho_{0}\left(M_{x}\right)$

$$
x_{e_{0}}(g)=\operatorname{tr}\left(e_{0}(g)\right)=t(1)=1
$$

(2) Vector representation $\left\{\binom{x}{y}\right\}=V$

$$
\begin{aligned}
& \text { representation }\left\{\binom{x}{y}\right\}=V \\
& P_{V}\left(C_{6}\right)=\left(\begin{array}{cc}
\cos ^{2 \frac{\pi}{6}} & \sin ^{2 \pi} 6 \\
-\sin ^{2} \frac{2}{6} & \cos ^{2} \frac{\sqrt{2}}{6}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\rho_{V}\left(m_{x}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
X_{e_{v}}\left(C_{6}\right)=\operatorname{tr}\left[\left(\begin{array}{cc}
1 & \sqrt{3} / 2 \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\right]=\frac{1}{2}+\frac{1}{2}=1 \\
X_{e_{v}}\left(m_{x}\right)=\operatorname{tr}\left[\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right]=0
\end{gathered}
$$

Theses another $2 d$ rep I can write

$$
e^{\prime}\left(m_{x}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& e^{\prime}\left(C_{6}\right)=\left(\begin{array}{cc}
e^{2 \pi i / 3} & 0 \\
0 & e^{-2 \pi / 3}
\end{array}\right) \\
& X_{e^{\prime}}\left(m_{x}\right)=0 \\
& X_{\rho^{\prime}}\left(C_{6}\right)=2 \cos \frac{2 \pi}{3}=-1
\end{aligned}
$$

We are going to show that characters for irreducible representations form a basis for the set at all Characters.

Suppose we haver tovo reps e_{1}, e_{2} of 6

$$
\begin{aligned}
& e_{j} ; G \rightarrow \cup\left(V_{1}\right) \\
& C_{2} ; G \rightarrow \cup\left(V_{2}\right)
\end{aligned}
$$

and some we have some $A_{i} V_{1} \rightarrow V_{2}$ but A night not commute w/ the action ρ_{1}, e_{2}

$$
A e_{1}(g) \neq e_{2}(g) A
$$

recon always construct

$$
\begin{aligned}
& A_{6}=\sum_{g \in G}\left(\left(g^{\prime}\right) A e_{1}(g)\right. \\
& \text { then } A_{6} e_{1}\left(g^{\prime}\right)=\sum_{g \in G} e_{2}\left(g^{-1}\right) A e_{1}(g) e_{1}\left(g^{\prime}\right) \\
&=\sum_{g \in G} e_{2}\left(g^{-1}\right) A \rho\left(g g^{\prime}\right) \\
& g^{\prime \prime}=g g^{\prime} \\
& g=g^{\prime \prime} g^{\prime-1}
\end{aligned}
$$

$$
\begin{aligned}
\left(g_{j}\right. & \left.=\sum_{g^{\prime \prime} \in G} e_{2}\left(g^{\prime}\left(g^{\prime \prime}\right)^{\prime \prime}\right) \lg g^{\prime \prime}\right)^{-1} \\
& \left.=\rho_{2}\left(g^{\prime}\right) \sum_{g^{\prime \prime} G} \rho\left(g^{\prime \prime}\right)^{\prime \prime}\right) \operatorname{Ae}\left(g^{\prime \prime}\right) \\
& =\rho_{2}\left(g^{\prime}\right) A_{\sigma}
\end{aligned}
$$

$\rightarrow A_{6}$ is either invertible or zero

$$
\begin{gathered}
P_{1}=P_{2}^{L} \\
\text { and } A_{0}=\lambda I d
\end{gathered}
$$

Lets see what happens when A is equal to a matrix with only are nanwro

$$
\begin{aligned}
& A_{G}=\left(E_{i \omega \nu_{1}}\right)_{G}=\sum_{g \in G} e_{2}\left(g^{-1}\right) E_{i \nu_{1}} e_{1}(g) \\
& {\left[A_{6}\right]^{k e} }=\sum_{g \in G}\left[e_{2}\left(g^{-1}\right)\right]^{k k_{2}}\left[e_{1}(g)\right]^{j j_{l}} \\
&=\left\{\begin{array}{ccc}
0 & \text { if } e_{1} \neq e_{2} \\
\lambda \delta_{4 e} & f \rho_{1}=e_{2}
\end{array}\right.
\end{aligned}
$$

