Lecture 5 Anno	graups are on enwith pedia org/with the
·Recapi HIY,	$> = E_{nk} Y_{nk} >$
$H = \frac{59}{m} + V(2)$	V(r) is invariant under the symmetries of
a spence grp G	w/ Bravais lattice t
¥ éeT	$U_{\frac{1}{4}} Y_{nk}\rangle = e^{-ik\cdot t} Y_{nk}\rangle$
k e let	Brillowin Zone

Representation e of a group G $e: G \rightarrow U(\chi)$ on some vector space V s. J. $Q(g_1)Q(g_2) = Q(g_1g_2)$ Some subspace of Bloch states Elyk> Schematially / ÉET Bravais lattice timelations Example of a representation: $V = \{ | \Psi_{nk} > n = j Z_{n-1} N \}$

 $\begin{aligned} \varrho(\vec{t}) &= U_{\vec{t}} = \vec{e}^{i\vec{k}\cdot\vec{t}} S_{nm} \\ U_{\vec{t}} |\Psi_{n\vec{k}}\rangle &= \vec{e}^{i\vec{k}\cdot\vec{t}} |\Psi_{n\vec{k}}\rangle = \sum_{n=1}^{\infty} S_{nm} |\Psi_{n\vec{k}}\rangle \\ &= \sum_{n=1}^{\infty} S_{nm} |\Psi_{n\vec{k}}\rangle \\ \\ &= \sum_{n=1}^{\infty} S_{nm} |\Psi_{n\vec{k$ $P_{k}(\tilde{t}_{1}+\tilde{t}_{2})=e^{i\tilde{k}\cdot(\tilde{t}_{1}+\tilde{t}_{2})}S_{nm}$ $= \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{k=1}^{n} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sum_$ Qi 15 Qk reducible et isreducible?

•	•	· · · · · · · · · · · · · · · · · · ·		•	•	•	· · · · · · · · · · · · · · · · · · ·		•	· · ·	•			k(5 5 7			· · · · · · · · · · · · · · · · · · ·									-		-	-	-			e	・ ・ ・ ・ ・ ・ ・ ・ ・					•		· · ·	· · ·	•	•	•	•	· · ·
•	•	· ·	0	0	0	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•			•		•	•	•	•	•);				•	•	•	•	•	•	•	0	• •	0	0	•	•	•	• •
•	•	· ·	•	•	•	•	• •	•	•	•	•	•	•	· ·	•	•	•	-! -	Ý) } nk			2		r S		, Q,		•	Į∧		a,		nt		Si	nlo	5	0q	ן <mark>כו</mark> י	r V	ļ) Ol	` ;e	2a	d	1	•	· ·
•	•	· ·	•	•	•	•	• •	•	•	•	•	•	•	· ·	•	•	•	•	י גר ו		•	•	•	•	P	י אין אין) (Ì)	ļ	Ý)) vk			, , ,		ן . ר קיין קיין		 	P) . L		×	•	•	•	•	· ·
•	•	· ·	•	•	•	•	• •	•	•	•		ł		· · ·			י ג גי		c C	J	l			። የ	۔ ۱	' K	ي. ج	- - -1			i i			.16					\' \	•				•	•	•	•	•	· ·
•	•	••••	•	•	•	•	••••	•	•	•				• •						~ ~	مر						J	J	ľ	• •		•	e		•				J	•	•	•	• •	•	•	•	•	•	••••
•	•	· ·	•	•	•	•	· ·	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	1	(X)) d	len	11 1	y	M	ats	י'ן × י'ן	۲ ۱	•	· ·
•		••••	•	•	•		• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•••	•	•	•		•	

Schur's Lemma: Lets take a group G, and two
rrreducible representations C, G-SU(V)
$e_{2}; G \longrightarrow O(V_{2})$
If we have a linear map (matrix) $A:V_1 - 3V_2$ such that $AP_1(g) = P_2(g)A$ $\forall g \in G$
Then either A is invertible or A=O
pf; lets consider K = {veV, Av, =0} suppose we K wto

$Ae_1(g)W = e_2(g)AW = 0$ for all $ge G, Well$	
but this means P(g)KCK for all ge G	· · ·
~ K is an invariant subspace of en repeat som	
) since e, is irreducible either / K=Ø-) Ansine	while
$\langle K=V, -\rangle A=O$	· · ·
Corrolary: Suppose that $Q_1 = Q_2$ then $[A_1, Q_1, (g_2)]$ $\Rightarrow A = \lambda Id$	· · · · · · · · · · · · · · · · · · ·
pf: A is a square matrix, so it has an eigenvalue	

) and an eigenvector V	•
s.i. $A_V = \lambda_V$	•
$B = A - \lambda Id$	
Br=0 and [B, e(9)]=0 Vg	•
-> Schurs lemma => B=O	•
$\rightarrow A = \lambda Id$	
What does this corrolary mean for QM:	0
$H \Psi_i > = E_i \Psi_i > f$ we have some	•
group Got symmetries then lets consider	•

Sly a subset of Bloch states that frankformin 9 irreducible representation (irrep) Pot G $U_{g}|\Psi_{i}\rangle = \sum_{j}|\Psi_{j}\rangle P_{j}(g)$ $(U_g^{\dagger}HU_g=H)$ $[H]_{ij} = \langle \Psi_i | H | \Psi_j \rangle$ $= \langle \Psi_{i} | U_{g}^{\dagger} | \Psi_{g} | \Psi_{i} \rangle$

 $\sum_{k \in \mathcal{C}} \mathcal{C}^{\dagger}_{ik}(g) [H]_{k \in \mathcal{C}} \mathcal{C}_{ij}(g)$ [[H], Q(g)] = 0> [H] = ESij by Schus's lenna States that transform in impos of G are degenerate) If we can find irreps of space groups, then we can know about symmetry rentorced degenerated

between Bloch States.
Character theory: We can characterne representations by booking at traces et matries
Def Xe - the character of representation & of sig 6
$\mathcal{K}_{e}(g) = tr e(g)$
Some important properties of characters: D

 $= tr \left[e(g_1) e(g_2) e(g_1^{-1}) \right]$ $= Hr[e(9,1)e(9,1)e(9_2)]$ = $tr[e(9_2)]$ $-\chi(9_{z})$ Conjugacy dass (g) = Ehgh / he G' Characters are constant on conjugacy classes (2) $P_3 = P_1 \oplus P_2$ i.e. $P_3(g) = \begin{pmatrix} P_1 P_3 & O \\ O & P_3 P_3 \end{pmatrix}$

 $\chi_{e_3}(g) = tr [P_3(g)] = tr [(e_1(g) \circ e_2(g))]$ = tr (2, cg) + tr (2, cg) $=\chi_{e,(g)}+\chi_{e_2}(g)$ $\mathcal{X}_{e, \oplus e_1} = \mathcal{X}_{e_1} + \mathcal{X}_{e_1}$ C, and Pr are isomorphic in the sense that (3) $U_{e_1}(g)U^{\dagger} = P_2(g)$ then $\mathcal{T}_{e_1} = \mathcal{T}_{e_2}$

Lets do a quick example et group 6mm G=<CGZ,MX> Lets look at the representations: () Trivial representation $P_0 = 1 = P_0(M_x)$ $\chi_{e}(g): tr(e_{o}(g)) = tr(1) = 1$ (2) Vector representation $\begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} = V$ $\begin{cases} \begin{pmatrix} z \\ z \end{pmatrix} \\ \begin{cases} \zeta \\ \zeta \end{pmatrix} = \begin{pmatrix} z \\ z \end{pmatrix}$ $\begin{cases} \zeta \\ \zeta \\ \zeta \end{pmatrix} = \begin{pmatrix} z \\ \zeta \\ \zeta \\ \zeta \end{pmatrix} = \begin{pmatrix} z \\ \zeta \\ \zeta \\ \zeta \end{pmatrix}$

 $Q_{V}(m_{X}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathcal{X}_{e_V}(C_6) = t_{f} \left(\begin{pmatrix} L & 0 \\ 1 & 2 \\ -0 \\ 2 & L \end{pmatrix} \right) = \frac{1}{2} + \frac{1}{2} = 1$ $\chi_{e_V}(M_X) = tr\left[\begin{pmatrix} -l & 0 \\ 0 & 1 \end{pmatrix}\right] = 0$ There's another 2d rep I can write $P'(M_x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $\mathcal{C}'(\mathcal{C}_6) = \begin{pmatrix} e^{2\pi i \sqrt{3}} & 0 \\ -2\pi i \sqrt{3} \\ 0 & e^{-3\pi i \sqrt{3}} \end{pmatrix}$ $\chi_{\rho'}(M_{\chi})=0$ $\chi_{e'}(C_6) = 2\cos \frac{2\pi}{3} = -1$ We are going to show that characters for meducible representations form a basis for the set of all Characters.

Suppose we have tovo mens R, R, of G
$g_1, G \rightarrow U(V_1)$
$Q_{i}: G \rightarrow U(V_{i})$
and some we have some A:V1-JV2 but
A night not commute w/ the action P, Rz
$Ae_{1}(3) \neq e_{2}(3)A$
Verean always construct

 $A_{6} = \sum_{g \in G} (g) A_{P_{1}}(g)$ Here $A_{6}P(g') = \sum_{g \in G} P_{2}(g^{-1})AP_{1}(g)P_{1}(g')$ $= \sum_{g \in G} P_2(g^{-1}) A P(gg')$ g'' = gg' $g = g'' g'^{-1}$

 $g^{-1} = g'(g^{(1)})^{-1}$ $\sum_{g'' \in G} = \sum_{z} \left(\frac{g'(g'')}{g''} \right)^{1} A \left(\frac{g''}{g''} \right)^{1}$ $\mathcal{C}_{\mathcal{C}}(g') \stackrel{\mathcal{D}}{\underset{g' \in G}{\sum}} \mathcal{C}((g'')) \stackrel{\mathcal{D}}{\underset{g' \in G}{\sum} \mathcal{C}((g'')) \stackrel{\mathcal{D}}{\underset{g' \in G}{\sum}} \mathcal{C}((g'')) \stackrel{\mathcal{D}}{\underset{g' \in G}{\sum} \mathcal{C}((g'')) \stackrel{\mathcal{D}}{\underset{g' \in G}{\sum}} \mathcal{$ $= P_{i}(g')A_{G}$ -) AG is either invertible or Zero

 $Q_l = Q_L^{U}$ and As=JId Lets see what happens when A is equal to anothix with only one noncuro entry / liz-th row A= Kizdi V, i i i i J. -H. Colum

 $A_{G} = (E_{i_{U}})_{G} = \sum_{g \in G} (2(g')) E_{i_{U}} (2(g))$ $\begin{bmatrix} A_6 \end{bmatrix}^{k\varrho} = \sum_{g \in G} \begin{bmatrix} \varrho_2(g^{-1}) \end{bmatrix}^{ki_2} \begin{bmatrix} \varrho_1(g) \end{bmatrix}^{j_1 \ell}$ $= \int O i f R_1 \neq R_2$ $2\lambda S_{ke}$ if $P_1 = P_2$