Lecture 1	Welcome to Phys 598 GTC
Course	mebsite: https://courses.physics.illinois.edu/phys598gtc
Goals;	· Backgrowd necessary to study topological Materials
	· Modern developments in the thy of non-interacting electronic solids
	· Develop a foundarism for starting to study strong correlations

Rough guide i O Space group symmetries 2) Band representations & Wannier Functions 3 Berry phases and band topology (4) Topological Crystalline insulators Office Hrs: 4pn-5pm Mondays

I. Point and Space groups	
· Bradbey & Crachnell "Morthemontical Theor Symmetry in Solids"	γot
· Serre "Linear Representations of Finite Groups"	
Transformations d-dimensional space (d	-1,2,3)

What are the rigid transformentions that we can de 12 to this object translation $\vec{x} \rightarrow \vec{x} + \vec{d}$ me couldalso perform a rotation or reflection ネーフRネ extended

Any rigid transformation can be writ	ten as
a combination SRIJS of a l	otatien/reflection
with a translation	· · · · · · · · · · · · · · ·
[RIJ] - Seitz Symbol	
$\dot{x} \rightarrow \{R[\dot{z}]\dot{x} = R\dot{x} + \dot{d}$	
$E(d) = \{ \{R \mid d\} \}, J \in \mathbb{R}^{d} \text{ is a translation}$	ReO(d)}
Euclidean group	Orthogonal group

What does it mean for something to be a group? $R \in O(d)$: $X_i \rightarrow R_{ij} \tilde{X}_j$, $R \in O(d) \ll |det R|$ RcO(d)<=>|dotR| =1 () RIRZEOID RRZ $\left|\det(R_1,R_2)\right| = \left|\det R_1\det R_2\right| = \left|\det R_1\right|\left|\det R_2\right| = 1$ $R_1 \in O(d)$, $R_2 \in O(d) = R_1 R_2 \in O(d)$ 2) E= ('1,)] d ded identity matrix EO(d)

Ex=x R^{-1} exists and $\left|\det R^{-1}\right| = \left[\det R\right] = 1$ (3) $R^{-1} \in O(d)$ =) O(d) 15 a group A group is any set Gwith a binary operation (multiplication) such that; () There is an identity element EEG 2) The set is closed under the binary operation

(3) every element has an inverse $g \in G$ $g' \in G$ s.t. gg' = EO(d) is a group Claimi the translations {deRd is a group with longry operation + O: JeRd, dreißd J,+JvGRd 3: \$\$elpd]+\$=]

3 jeRd => -jeRd j+(-j)=> Let's show that E(d) is a group $g = \{R_1 | \tilde{d}_1\} = \{R_2 | \tilde{d}_2\} \in E(d)$ $g_{i} \stackrel{>}{x} \rightarrow R_{i} \stackrel{>}{x} + \overline{d}_{i} = g_{i} \stackrel{>}{x}$ $g_{2}g_{1}: X \rightarrow g_{2}(g_{1}x) = g_{1}(R_{1}x + d_{1})$ $= R_2(R_1\dot{x} + \dot{d}_1) + \dot{d}_2$ $= R_2 R_1 \dot{x} + (R_2 \vec{d}_1 + \vec{d}_2)$

= $\{R_{2}R_{1}|R_{2}J_{1}+J_{2}\}$ $\left\{ R_2 \left[\hat{d}_2 \right] \left\{ R_1 \left[\hat{d}_1 \right] \right\} = \left\{ R_2 R_1 \left[R_2 \hat{d}_1 + \hat{d}_2 \right] \in \mathbb{E}(d) \right\}$ $\{E|Q\}$ $\hat{x} = \hat{x}$ $\{E|\emptyset\}\{R|J\} = \{ER|EJ+\emptyset\} = \{R|J\}$ =) (E (d) has an identity operation 3. We need to Find the inverse of {RIJ}

 $\{R[\hat{d}]^{T} = \{A[\hat{t}]\} \text{ for } AeO(d), \hat{t} \in \mathbb{R}^{d}$ $\{E \mid \emptyset\} = \{A \mid \tilde{t}\} \{E \mid \tilde{d}\} = \{A \mid A \mid \tilde{d} + \tilde{t}\}$ rotation E=AR -> A=R-1 perts translation $\vec{Q} = \vec{R} \cdot \vec{J} + \vec{E} \rightarrow \vec{E} = -\vec{R} \cdot \vec{d}$ $\{R[\vec{d}]^{-1} = \{R^{-1}| - R^{-1}\vec{d}\}$

> E(d) is a group /// Every element [R]] EE(d) $[RIJ] = \{E|J\}\{R|\emptyset\}$ Rª O(d) me say that E(d) = Rd XO(d) Semidirect product

 $\{R_{1}|\tilde{d}_{1}\}\{R_{2}|\tilde{d}_{2}\}=\{R_{1}R_{2}|R_{1}\tilde{d}_{2}+\tilde{d}_{1}\}$ on the contrary R^d × O(d) direct product $\left[\left(R_{1},\vec{d}_{1}\right)\left(R_{2},\vec{d}_{2}\right)=\left(R_{1}R_{2},d_{1}+d_{2}\right)\right]$ 9.9 X Exi 2D System 91= E | XS $9_{2}9_{1}x = \{R_{\overline{\nu}_{2}}|\hat{\gamma}\}$ $g_{l} = \{ R_{\pi_{1}} | \emptyset \}$

Lets start applying this to crystals	· · · ·
- Crystals are defined by the fact that they have discrete translation Symmetry	· · · ·
let G be the group of transformations that leave the crystal invariant	7
GCE(d) is a subgrp of the endiden	

$G \ni \{E n, e_1\}$	$+n_2 \vec{e}_1 + \dots - n_d \vec{e}_d \vec{f}$
Exi 20	$n_1 \tilde{e}_1 + n_2 \tilde{e}_2$ are
Any discrete subgrou	p of IR ^d is generated by
choosing a basis (for	a d-dirersienal xtal)

The	Set of trons S{Elin, e, the	latins et+- ñiel) is called
fle	Bravia is lattice	of the Crystal	
any fle ber	choice of [ê, Bravais lattice rice vectors	$\tilde{e}_{1,-}\tilde{e}_{d}$ is called a	that generatics Set of primitive
G	ren a choice of	primitive lattic	re vectors,

	we can	Jetre 9	Primitive	unit cel	ι
	Q	subset of	space 5	1,7- NO 1	attice translation
· · · · · · ·	naps	points insid	letle unit	cell to c	ther points in the
· · · · · · ·	Unit	cell .			
· · · · · · ·	· · · · · · · · · · ·	J		· · · · · · · · ·	· · · · · · · · · · · · · · · · ·
 	· · · · · · · · · · ·	، ، ، ، ر ، ال ، ، ، ، ، ، ، ، ، ، . . • • ، ر ، ، ، ، ، ، ، ، ، . ب ، ، ر ، ، ، ، ، ، ، ، ، ،		· · · · · · · · · ·	
		•	· · · · · · · · · · · · · · · · · · ·		
· · · · · · ·	· · · · · · · · · · ·	Re PUC	$f \dot{x} = t$	jej+trez	$t_{1}, t_{1} \in \left(-\frac{1}{2}, \frac{1}{2}\right)$
· · · · · ·			· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

. .	Any ch defines	er Bravais lattice	independent Vectors	 . .
· ·	However Vectors Symme:	for special choices, the Bravia's battice	of primitive bittice Might have extra	
Ex	22	$\dot{e}_1 = a\hat{x}$ $\dot{e}_2 = b\hat{x} + c\hat{y}$	$e_{\mathcal{C}} \xrightarrow{e_{1}} u$ e_{1} $i = 1$	· · · · · · · · · · · · · · · · · · ·
		fb=0	if 6=0 AND a=	C

																			. ·								
								.•	•										•	· T							
																					-						
			. — .																•)	•.				
					 \sim	-			-	. ~	- 1	- <u>j</u>	\sim	\sim	 \sim	<u>~</u> `			<u> </u>								
																			I.,	. •.	. 1		•				
								d																			
												. 1															