Lecture 1 Welcome to Phys5986TC

Goals: - Backerawd necessary to study topological materials

- Modern developments in the thy of nan-anterating electronic solids
- Develop a foundation for starting to study strong correlations

Rough guide: (1) Space group Symmetries
(2) Band representations \& Wanner faction
(3) Berry phases and band topology
(4) Topological crystalline insulators

Office Hrs: 4pu-5pm Mondays
I. Point and Space groups

- Bradley \& Crack nell "Mathematical Theory ot Symmetry ir Solids"
- Sere "Linear Representations of Finite Groups"
Transformations d-dimensional space $(d-1,2,3$,

What are the rigid transformentsens that we con de to this abject
translation $\vec{x} \rightarrow \vec{x}+\vec{d}$
we could also perform a rotation or reflection $\quad \vec{x} \rightarrow R \vec{x}$

Any rigid troustonation can be written as a combination $\{R \mid \vec{j}\}$ of a rotation/reflection with a translation

$$
\begin{aligned}
& \qquad\{R \mid \vec{d}\}-\text { Seitz Symbol } \\
& \vec{x} \rightarrow\{R \mid \vec{d}\} \vec{x}=R \vec{x}+\vec{d} \\
& \mathbb{E}(d)=\left\{\{R \mid \vec{d}\}, \vec{d} \in \mathbb{R}^{d} \text {, satrearlation } \begin{array}{c}
R \in O(d)\} \\
\hat{\imath} \\
\text { Euclidean group }
\end{array} \begin{array}{c}
\text { Orthogonal } \\
\text { group }
\end{array}\right.
\end{aligned}
$$

What does it mean for somethry to be a group?

$$
R \in O(d): x_{i} \rightarrow R_{i j} \vec{X}_{j}
$$

$$
R \in O(d) \Leftrightarrow|d d R|
$$

(1)

$$
\begin{aligned}
& R_{1}, R_{2} \in O(d) \quad R_{1} R_{2} \\
& \left|\operatorname{det}\left(R_{1} R_{2}\right)\right|=\left|\operatorname{det} R_{1} \operatorname{det} R_{2}\right|=\left|\operatorname{det} R_{1}\right|\left|\operatorname{det} R_{2}\right|=1 \\
& R_{1} \oplus O(d), R_{2} \in O(d) \Rightarrow R_{1} R_{2} \in O(d)
\end{aligned}
$$

(2) $\left.E=\left(\frac{1}{1},\right)\right] d$ dad idenkty matrix $\in O(d)$
$E \vec{x}=\vec{x}$
(3) R^{-1} exists and $\left|\operatorname{det} R^{-1}\right|=\frac{1}{|\operatorname{det} R|}=1$

$$
R^{-1} \in O(d)
$$

$\Rightarrow O(d)$ is a group
A group is any set6with a binary operation (multiplicatra) such that:
(1) There is an identity element $E \in G$
(2) The set is closed under the binary operation
(3) every element has an inverse $g \in G \quad g^{-1} \in G$ sit. $g g^{-1}=E$

Ord) is a group
Claim the trouslatiens $\left\{\vec{d} \in \mathbb{R}^{d}\right\}$ is a group with binary operation t
(i): $\vec{d}_{1} \in \mathbb{R}^{d}, d_{2} \in \mathbb{R}^{d} \quad \vec{d}_{1}+\vec{d}_{2} \in \mathbb{R}^{d}$
(2): $\vec{\varnothing} \in \mathbb{R}^{d} \quad \vec{j}+\vec{\varnothing}=\vec{j}$

$$
\text { (3) } \vec{d} \in \mathbb{R}^{d} \Rightarrow-\vec{d} \in \mathbb{R}^{d} \quad \vec{d}+(-\vec{d})=\vec{\varnothing}
$$

Let's show that $\mathbb{E}(d)$ is a group

$$
\begin{aligned}
& g_{1}=\left\{R_{1} \mid \vec{d}_{1}\right\} g_{2}\left\{R_{2} \mid \vec{d}_{2}\right\} \text { e } \mathbb{E}(d) \\
& g_{1} \vec{x} \rightarrow R_{1} \vec{x}+\vec{d}_{1}=g_{1} \vec{x} \\
& \begin{aligned}
g_{2} g_{1}: x \rightarrow g_{2}\left(g_{1} \vec{x}\right) & =g_{2}\left(R_{1} \vec{x}+\vec{d}_{1}\right) \\
& =R_{2}\left(R_{1} \vec{x}+\vec{d}_{1}\right)+\vec{d}_{2} \\
& =R_{2} R_{1} \vec{x}+\left(R_{2} \vec{d}_{1}+\vec{d}_{2}\right)
\end{aligned} \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{R_{2} R_{1} \mid R_{2} \vec{d}_{1}+\vec{d}_{2}\right\} \vec{x} \\
\left\{R_{2} \mid \vec{d}_{2}\right\}\left\{R_{1} \mid d_{1}\right\} & =\left\{R_{2} R_{1} \mid R_{2} \vec{d}_{1}+\vec{d}_{2}\right\} \in \mathbb{E}(d)
\end{aligned}
$$

2.

$$
\begin{aligned}
& \{E \mid \varnothing\} \vec{x}=\vec{x} \\
& \{E \mid \varnothing\}\{R \mid \vec{d}\}=\{E R \mid E \vec{d}+\varnothing\}=\{R \mid \vec{d}\}
\end{aligned}
$$

$\Rightarrow \mathbb{E}(d)$ has an identity operation
3. We need to find the inverse of $\{R \mid d\}$

$$
\begin{aligned}
& \{R \mid \vec{d}\}^{-1}=\{A \mid \vec{t}\} \text { for } A \in O(d), \vec{t} \in \mathbb{R}^{d} \\
& \{E \mid \varnothing\}=\{A \mid \vec{t}\}\{R \mid \vec{d}\}=\{A R \mid A \vec{d}+\vec{t}\} \\
& \underset{\substack{\text { rotation } \\
\text { pows }}}{ } E=A R \rightarrow A=R^{-1} \\
& \begin{array}{c}
\text { tranlation } \\
\text { poots }
\end{array} \quad \vec{\varnothing}=R^{-1} d+\vec{t} \rightarrow \vec{t}=-R^{-1} d \\
& \{R \mid \vec{d}\}^{-1}=\left\{R^{-1} \mid-R^{-1} \vec{d}\right\}
\end{aligned}
$$

$\Rightarrow \mathbb{E}(d)$ is a group $\sqrt{ } / \sqrt{ }$
Every element $\{R \mid \vec{d}\} \in \mathbb{E}(d)$

$$
\begin{aligned}
& \{R \mid \vec{d}\}=\{E \mid \vec{d}\}\{R \mid \varnothing\} \\
& \mathbb{R}^{d} \quad O(d)
\end{aligned}
$$

we say that $\mathbb{E}(d)=\mathbb{R}^{d} \nsupseteq O(d)$ semidirect product

$$
\left\{R_{1} \mid \vec{d}_{1}\right\}\left\{R_{2} \mid \vec{d}_{2}\right\}=\left\{R_{1} R_{2} \mid R_{1} \vec{d}_{2}+\vec{d}_{1}\right\}
$$

$$
\left[\begin{array}{l}
\text { on the contrary } \\
R^{d} \times(\Omega) \\
\text { direct product } \\
\left(R_{1}, \vec{d},\left(R_{2}, d_{2}\right)=\left(R_{1} l_{2}, d_{1}+d_{2}\right)\right.
\end{array}\right]
$$

Ex: 2D System

$$
\begin{aligned}
& g_{1}=\{E \mid \hat{x}\} \\
& g_{2}=\left\{R_{\pi / 2} \mid \emptyset\right\}
\end{aligned}
$$

$$
g_{\varepsilon} g_{1} x=\left\{R_{\vec{i}} \mid \hat{y}\right\}
$$

Lets start apdying this to crystals

- Crystals are defined by the fact that they have discrete translation Symmetry
let G be the group of transformations thant leave the crysten invariant
$G \subset \mathbb{E}(d)$ is a subgrs of the eudideen group

$$
\begin{aligned}
& G \ni\left\{\left[\mid n_{1} \vec{e}_{1}+n_{2} \vec{e}_{2}+\ldots n_{d} \vec{e}_{d}\right\}\right. \\
& n_{1}, n_{2}, n_{3} \ldots n_{d} \in \mathbb{Z} \text { integers }
\end{aligned}
$$

Any discrete subgraup of \mathbb{R}^{d} is gererated by choosing a babis (for ad-dirensienal xtal))

The set of translations

$$
\left\{\left\{E \mid \hat{n}_{1} e_{1}+\hat{n}_{2} e_{2}+\cdots \hat{n}_{d} e_{d}\right\}\right\} \text { is called }
$$

the Brawais lattice of the crystal
any choice of $\left\{\vec{e}_{1}, \vec{e}_{n}, \ldots \vec{e}_{d}\right\}$ that generates the Brovals lattice is called a set of primitive lattice vectors

Given a chance of primitive lattice vectors,
we con refire a primitive unit cell:
a subset of space Sit. no lattice translation maps points inside the unit cell to other point in the wat well

$$
\vec{x} \in P \cup C \text { f } \vec{x}=t_{1} \vec{e}_{1}+t_{2} \vec{e}_{2} \quad t_{1}, t_{2} \in\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

Any chare of d linearly independent vectors defines a Bravais lattice

However for special choices of primitive lattice vectors, the Bravals lattice might have extra symmetry

Ex $2 d$

$$
\begin{aligned}
& \begin{array}{l}
\vec{e}_{1}=a \hat{x} \\
\vec{e}_{2}=b \hat{x}+c \hat{y} \quad, \quad{ }_{e_{1}}^{e_{1}},
\end{array} \\
& \text { if } b=0 \quad \text { if } b=0 \text { AND } a=c
\end{aligned}
$$

