PHYS 598 GTC Homework 3

1. Consider the projector product representation of the Wilson line,

$$
\begin{equation*}
W_{k_{\mu} \leftarrow 0}^{n m}\left(\mathbf{k}_{\perp}\right)=\left\langle u_{n k_{\mu}, \mathbf{k}_{\perp}}\right| \prod_{k_{\mu}^{\prime}}^{k_{\mu} \leftarrow 0} P\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}\right)\left|u_{m 0, \mathbf{k}_{\perp}}\right\rangle, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P\left(k_{\mu}, \mathbf{k}_{\perp}\right)=\sum_{n=1}^{N}\left|u_{n k_{\mu}, \mathbf{k}_{\perp}}\right\rangle\left\langle u_{n k_{\mu}, \mathbf{k}_{\perp}}\right| . \tag{2}
\end{equation*}
$$

Show that $W_{k_{\mu} \leftarrow 0}^{n m}\left(\mathbf{k}_{\perp}\right)$ satisfies

$$
\begin{equation*}
i D_{\mu} W=0 \tag{3}
\end{equation*}
$$

where D_{μ} is the covariant derivative.
Hint: start with the definition

$$
\begin{equation*}
\partial_{\mu} W_{k_{\mu} \leftarrow 0}^{n m}\left(\mathbf{k}_{\perp}\right)=\lim _{\Delta \rightarrow 0} \frac{1}{\Delta}\left(W_{k_{\mu}+\Delta \leftarrow 0}^{n m}\left(\mathbf{k}_{\perp}\right)-W_{k_{\mu} \leftarrow 0}^{n m}\left(\mathbf{k}_{\perp}\right)\right) \tag{4}
\end{equation*}
$$

of the derivative.
2. In this problem, we will show that

$$
\begin{equation*}
\operatorname{det}\left\{W_{k_{\mu} \leftarrow 0}\left(\mathbf{k}_{\perp}\right)\right\}=\exp \left(i \int d k_{\mu}^{\prime} \operatorname{tr}\left[A_{\mu}\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}\right)\right]\right) \tag{5}
\end{equation*}
$$

where tr denotes the matrix trace. We will proceed via the following steps:
(a) Show that Eq. (1) can be rewritten as

$$
\begin{equation*}
W_{k_{\mu} \leftarrow 0}\left(\mathbf{k}_{\perp}\right)=\lim _{\Delta \rightarrow 0} \prod_{k_{\mu}^{\prime}}^{k_{\mu} \leftarrow 0} M\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}, \Delta\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
M^{n m}\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}, \Delta\right)=\left\langle u_{n k_{\mu}+\Delta, \mathbf{k}_{\perp}} \mid u_{m k_{\mu}, \mathbf{k}_{\perp}}\right\rangle \tag{7}
\end{equation*}
$$

(b) Show that det $M\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}, \Delta\right)=\exp \left(i \Delta \operatorname{tr}\left[A_{\mu}\left(k_{\mu}^{\prime}, \mathbf{k}_{\perp}\right)\right]\right)+\mathcal{O}\left(\Delta^{2}\right)$.
(c) Using (a) and (b), prove Eq. (5).
3. Consider the product of four Wilson lines around a small square of area $\delta k_{1} \delta k_{2}$,

$$
\begin{equation*}
W=W_{4} W_{3} W_{2} W_{1} \tag{8}
\end{equation*}
$$

depicted in the figure below.

(a) Using Stokes's theorem and the results of Problem 2, show that

$$
\begin{equation*}
\lim _{\delta k_{1}, \delta k_{2} \rightarrow 0} \frac{1}{\delta k_{1} \delta k_{2}} \operatorname{Im} \log \operatorname{det} W=\operatorname{tr} \Omega\left(\mathbf{k}_{\mathbf{0}}\right) \tag{9}
\end{equation*}
$$

where $\Omega\left(\mathbf{k}_{0}\right)$ is the Berry curvature.
(b) Show that the combination of inversion and time-reversal symmetry requires $\operatorname{det} W$ to be real
(c) Deduce the constraint on $\operatorname{tr}\left(\Omega\left(\mathbf{k}_{\mathbf{0}}\right)\right)$ implied by (a) and (b). What does this mean for Wannier functions when we have a single isolated band with inversion and timereversal symmetry?
4. Consider the $\mathbf{k} \cdot \mathbf{p}$ Hamiltonian

$$
\begin{equation*}
H(\mathbf{k})=v \mathbf{k} \cdot \vec{\sigma}, \tag{10}
\end{equation*}
$$

where $v>0$ and $\vec{\sigma}$ is a vector of three Pauli matrices.
(a) Find the energies $\epsilon_{ \pm}(\mathbf{k})$ and the eigenstates $\left|u_{ \pm, \mathbf{k}}\right\rangle$.
(b) Compute the Berry connection $A_{+\mu}=i\left\langle u_{+, \mathbf{k}} \mid \partial_{\mu} u_{+, \mathbf{k}}\right\rangle$ for the upper band.
(c) Find the Berry curvature $\Omega_{+}(\mathbf{k})$. What is the integral of $\Omega_{+}(\mathbf{k})$ over a constant energy surface? Hint: Work in polar coordinates for as long as possible.

