PHYS 598 GTC Homework 2

One representation of a group that is particularly important is called the *regular representation*. If G is a finite group (|G| < ∞), then we can define the regular representation ρ as follows: We consider the |G|-dimensional complex vector space C^{|G|}. There is one basis vector e_g per group element g ∈ G. We define the representation ρ : G → U(|G|) acting on this vector space as

$$\rho(g)\mathbf{e}_{g'} = \mathbf{e}_{gg'}$$

for basis vectors.

(a) By looking at the matrix elements of $\rho(g)$, show that the character χ_{ρ} for the regular representation satisfies

$$\chi_{\rho}(g) = \begin{cases} 0, & g \neq E_G \\ |G|, & g = E_G \end{cases},$$

where E_G is the identity element in G.

(b) Let $\{\eta_i\}$ be the set of irreps of G. Show that the regular representation is reducible and decomposes as

$$\rho = \bigoplus_{i} [\dim(\eta_i)] \eta_i.$$

2. An important theorem about groups that we have used implicitly in proving Schur's lemma is known (confusingly) as the first isomorphism theorem. Here we will state and prove this theorem. Let G and H be two groups, and consider a function $\phi : G \to H$ from G to H. ϕ is called a *group homomorphism* if it is compatible with group multiplication in G and H, i.e. if

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2)$$

for all $g_1, g_2 \in G$. Note that if H is the unitary group, then ϕ is a representation as we have defined it in class. For a group homomorphism ϕ , we can consider the following two sets:

$$\operatorname{Ker}(\phi) = \{g \in G \mid \phi(g) = E_H\},\\ \operatorname{Im}(\phi) = \{\phi(g) \mid g \in G\},$$

where E_H denotes the identity element in H.

- (a) Show that $Ker(\phi)$ is a normal subgroup of G.
- (b) Show that $Im(\phi)$ is a subgroup of *H*.
- (c) Using a coset decomposition, show that $Im(\phi) \approx G/Ker(\phi)$.

3. Consider the space group C2/m. We can take a presentation of this group with primitive Bravais lattice vectors

$$\mathbf{e}_1 = \frac{1}{2}(a\mathbf{\hat{x}} + b\mathbf{\hat{y}}),$$
$$\mathbf{e}_2 = \frac{1}{2}(a\mathbf{\hat{x}} - b\mathbf{\hat{y}})$$
$$\mathbf{e}_3 = c\mathbf{\hat{z}},$$

mirror symmetry m_y , and inversion symmetry about the origin.

- (a) Write down a set of primitive reciprocal lattice vectors.
- (b) Consider the following k-vectors given in Cartesian components. What are their little groups?

i.
$$\Gamma = \vec{0}$$

ii. $Y = \frac{2\pi}{b} \hat{\mathbf{y}}$
iii. $B = 2\pi \left(\frac{1}{3a} \hat{\mathbf{x}} + \frac{1}{7c} \hat{\mathbf{z}}\right)$

- (c) Sketch the primitive unit cell for the reciprocal lattice (a 2D projection is fine), and identify the points that have m_y in their little group. How many independent m_y -invariant planes are there?
- 4. Consider the space group $P4_1$. By considering monodromy of little group representations, determine the smallest number of connected bands that is consistent with the compatibility relations. From this, what can you say about a crystal with $P4_1$ symmetry and two electrons per unit cell?