PHYS 598 GTC Homework 2

1. One representation of a group that is particularly important is called the regular representation. If G is a finite group $(|G|<\infty)$, then we can define the regular representation ρ as follows: We consider the $|G|$-dimensional complex vector space $\mathbb{C}^{|G|}$. There is one basis vector \mathbf{e}_{g} per group element $g \in G$. We define the representation $\rho: G \rightarrow U(|G|)$ acting on this vector space as

$$
\rho(g) \mathbf{e}_{g^{\prime}}=\mathbf{e}_{g g^{\prime}}
$$

for basis vectors.
(a) By looking at the matrix elements of $\rho(g)$, show that the character χ_{ρ} for the regular representation satisfies

$$
\chi_{\rho}(g)=\left\{\begin{array}{ll}
0, & g \neq E_{G} \\
|G|, & g=E_{G}
\end{array},\right.
$$

where E_{G} is the identity element in G.
(b) Let $\left\{\eta_{i}\right\}$ be the set of irreps of G. Show that the regular representation is reducible and decomposes as

$$
\rho=\bigoplus_{i}\left[\operatorname{dim}\left(\eta_{i}\right)\right] \eta_{i} .
$$

2. An important theorem about groups that we have used implicitly in proving Schur's lemma is known (confusingly) as the first isomorphism theorem. Here we will state and prove this theorem. Let G and H be two groups, and consider a function $\phi: G \rightarrow H$ from G to $H . \phi$ is called a group homomorphism if it is compatible with group multiplication in G and H, i.e. if

$$
\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)
$$

for all $g_{1}, g_{2} \in G$. Note that if H is the unitary group, then ϕ is a representation as we have defined it in class. For a group homomorphism ϕ, we can consider the following two sets:

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\left\{g \in G \mid \phi(g)=E_{H}\right\} \\
\operatorname{Im}(\phi) & =\{\phi(g) \mid g \in G\}
\end{aligned}
$$

where E_{H} denotes the identity element in H.
(a) Show that $\operatorname{Ker}(\phi)$ is a normal subgroup of G.
(b) Show that $\operatorname{Im}(\phi)$ is a subgroup of H.
(c) Using a coset decomposition, show that $\operatorname{Im}(\phi) \approx G / \operatorname{Ker}(\phi)$.
3. Consider the space group $C 2 / m$. We can take a presentation of this group with primitive Bravais lattice vectors

$$
\begin{aligned}
& \mathbf{e}_{1}=\frac{1}{2}(a \hat{\mathbf{x}}+b \hat{\mathbf{y}}), \\
& \mathbf{e}_{2}=\frac{1}{2}(a \hat{\mathbf{x}}-b \hat{\mathbf{y}}) \\
& \mathbf{e}_{3}=c \hat{\mathbf{z}}
\end{aligned}
$$

mirror symmetry m_{y}, and inversion symmetry about the origin.
(a) Write down a set of primitive reciprocal lattice vectors.
(b) Consider the following k -vectors given in Cartesian components. What are their little groups?
i. $\Gamma=\overrightarrow{0}$
ii. $Y=\frac{2 \pi}{b} \hat{\mathbf{y}}$
iii. $B=2 \pi\left(\frac{1}{3 a} \hat{\mathbf{x}}+\frac{1}{7 c} \hat{\mathbf{z}}\right)$
(c) Sketch the primitive unit cell for the reciprocal lattice (a 2D projection is fine), and identify the points that have m_{y} in their little group. How many independent $m_{y^{-}}$ invariant planes are there?
4. Consider the space group $P 4_{1}$. By considering monodromy of little group representations, determine the smallest number of connected bands that is consistent with the compatibility relations. From this, what can you say about a crystal with $P 4_{1}$ symmetry and two electrons per unit cell?

