Lecture 8	Accap: Every crystal has a Bravari lattice [
0	if G 13 a space group, then
. .	T46
	He point group $G = \frac{1}{7}$
· · · · · · · · · · · · · · ·	$\overline{c} = \{ R \mid \{ R \mid j \} \in G \} \subset O[s] $
	, FRGE then;
	- R is a rotation b) 0, + II, + II, + II, + II
· · · · · · · · · · · ·	- R is spatial inversion I: (x,y,z)->(-x,->,-z)

-R is the composition of Ix an allowed rotation 32 allowed crystallagrapic point groups in 3D Haugh IMACHINE (H, uz]= O VéeT $\frac{|\Psi_{nk}\rangle\langle\Psi_{nk}|\Psi_{t}\rangle}{|\Psi_{t}\rangle\langle\Psi_{nk}|\Psi_{t}\rangle\langle\Psi_{nk}|\Psi_{t}\rangle\langle\Psi_{nk}\rangle} = \frac{|\Psi_{t}\rangle\langle\Psi_{nk}\rangle\langle\Psi_{nk}|}{|\Psi_{t}\rangle\langle\Psi_{nk}|\Psi_{t}\rangle\langle\Psi_{nk}|\Psi_{nk}\rangle\langle\Psi_{nk}|}$

 $= |\Psi_{nk} > \langle \Psi_{nk} | H U_t | \Psi_{nk} > \langle \Psi_{nk} |$ = | $\Psi_{nk} > \langle \Psi_{nk} | H | \Psi_{nk} > \langle \Psi_{nk} | U_t$ $U_{L} = 1 = 7 k = \frac{2\pi n}{1}$ $H = \frac{p^2}{2m} + V(x)$ $i k \cdot r$ e $U_{nk}(r) = V_{nk}(r)$ $\frac{H[\Psi_{Ak}] = E_{Ak}[\Psi_{Ak}] \qquad e^{ik\cdot r} \qquad \Psi_{Ak}(r) = \Psi_{Ak}(r)$ $= \frac{H[\Psi_{Ak}] = E_{Ak}[\Psi_{Ak}] \qquad e^{ik\cdot r} \qquad \Psi_{Ak}(r) = \Psi_{Ak}(r)$ $= \frac{H[\Psi_{Ak}]}{H[\Psi_{Ak}]} = E_{Ak}[\Psi_{Ak}(r) = E_{Ak}[\Psi_{Ak}(r)] \qquad e^{ik\cdot r} \qquad \Psi_{Ak}(r)$ $\left(\bar{G}=4\right)$

· · · · · · · · ·	We wat to put I and E together kigor 6
	ef. Not every T is compatible w/ every G
	$\overline{G} = \overline{G} = \overline{G}$ $Re\overline{G} = R\overline{E}eT$
	6 Families (some have different centernys)) 14 classes of Branais lattice

Say me have Jreup G T and a compatible pt Ē=67 G = TUTER, IJ, UTER, IJ, C. UTER, IJ $\overline{G} \approx \{ E_{1}, R_{1}, \dots, R_{n-1} \}$ One way to put G and T together -semidirect product

$G = T \times G = T \overline{G} = \{ s \in l \neq l$
73 space groups that can be built as semidment
Products -) Symmorphic space groups
G <g for="" groups<="" symmorphic="" td=""></g>
G = {RID} = T × G
Notation for symmosphic groups:
(Let ter J[Herman-Maugin symbol for pt granp]

tells us Bravail battice conterny	Example of centerry; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	Providere de Face contered
Ex. Pmm2	$mm2=\left\{E_{1}C_{22}/M_{X}/M_{Y}\right\}$
Primitive Primitive Ordered that the Osthorhombic QXIS	to show us, twofold rotation s along Z

è,=(a,0,0) afbtc ê. : (0,6,0) è, = (0,0, c) Ex: R3M)_ point group Im = < C32, MX, I> (homboledra) $\vec{e}_{i} = (0, -\alpha, c)$ e, e $\vec{e}_{1} = \frac{1}{2} (a\sqrt{3}, a, 2c)$ $\dot{e}_{s} = \frac{1}{2}(-\alpha \sqrt{3}, \alpha, 2c)$

G = TXG Translations/ translations reflections Symmorphic space groups: Most spare groups are not symmorphic Nonsymmorphic space groups: G=T\$G What does this mean $G = TUT SR, Ia, SUT SR, Ia, SU, - T(R_n, Ia_n)$ $\overline{G} = \{E, R_1, \dots, R_{n-1}\}$

of G is not symmorphisto be a fractional translat	c at least one d, has
In Most cases : 6 is non. Screw rotation	symmorphic blc it cantains or glide reflection
Screw rotation; {Cnî]}	where J has a component along T that's a fraction of a lattice vector
$\int_{a} \frac{dentited}{d} = \frac{l}{n} \frac{d}{e}$	(ne) - q trouslation by l primitive buttice Vectors glong i l <n< td=""></n<>

ė,= (0,0, €) Ex. $2_1 \left\{ C_{27} | \frac{1}{2} \hat{\vec{e}}_{3} \right\}$ $\left\{C_{n}\left(\frac{i}{i}e_{s}\right)^{2}=\left\{E\left[\hat{e}_{s}\right]\right\}$ $(X, Y, z) \rightarrow (-X, -Y, Z + \frac{1}{2})$ $(3_1)^3 = \{ E | \hat{e}_3 \}$ $3_{1} = \left\{ \zeta_{32} \left| \frac{1}{2} \vec{e}_{1} \right\} \right\}$ $(3_1)^3 = \{ E | 2 \vec{e}_3 \}$ $3 = \{ C_{32} | \frac{2}{3} \frac{1}{6} \}$ $4_{1}, 4_{2}, 4_{3}, 6_{1}, 6_{2}, 6_{3}, 6_{4}, 6_{5}$

 $2_{3} = \{C_{2+} | \frac{3}{2} \vec{e}_{3}\} = \{E | \vec{e}_{3}\} \{C_{2+} | \frac{1}{2} \vec{e}_{3}\}$ $= \{ E \mid \vec{z}_{3}\}(2_{1})$ $^{n}2_{3}^{\prime\prime}=\{C_{23}|\vec{e}_{3}\}$ $\{C_{nz}|z\hat{z}\}^{n} = [E|nz\hat{z}]$ ngiz e T Clide reflections' mirror reflections + a translation not orthogenal to the mirror plane Enald'

· ·	12 Ari	j×ĵ×ĵ
\$	$M_{\hat{r}} \hat{J}\hat{J}^2 = \{E $	$J + M_{p}J = F$
ē,= (٩,0,0)	Component of d lattice vector	in the mirror plane is half a
9 = S	$M_{\hat{z}}[\dot{z}\dot{e}]$	$g: (x, \gamma, z) \rightarrow (x + \frac{\alpha}{2}, \gamma, -z)$
	Symbol for slide syn	$g = \{E \overline{e}_1 \leq \dots \leq v \}$

M - mirror (not a glide) a,b,c - glide w/ translation along cartesian direction A -glide ul translation along face d - glide w/ travilation along diagonal e - multiple glides W/ save missorphane Example: Quasi-1D system $\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = \frac{\partial}$

T={Elnax} Inez? {my] = x} - "a" type glike $G = TUT\{M_y|\frac{2}{3}k\} = P_a$ 157 nonsymmorphic space groups 73 symmerphic -> 230 space groups

Face centered osthorhombic 6/7=6 (a,b,0 $= \frac{1}{2}(\alpha, -6, 0)$ ê (0,0,0

			• •	• •	•		• •		• •					• •								• •				•	• •
	• •		• •	• •	•		• •		• •		• •		• •	• •		~		1		~		• •				• •	• •
									• •					• •		JV.	Ľ	b	.~	· (•	1	• •					
									• •						o ·	· · ·						• •					
				• •					• •				• ¶ •		1.						.0	~ 7	4-		7	• •	
)							1	-	1				
																							Н	-	4		
													Ľ,		.					c	R	/	4		. مر		
																					. 1		. 1				
				• •					• •					• •						• •		• •					• •
				• •					• •					• •						• •		• •					• •
				• •					• •					• •						• •		• •					• •
				• •					• •					• •						• •		• •					• •
														• •						• •		• •					
				• •					• •					• •						• •		• •					• •
									• •					• •						• •		• •					
									• •					• •						• •		• •					
			• •						• •																		