Lecture 6 Reminders: HWI due 9/19 Office his Wednesdays 4-Spin Recap: e:G->U(V) a (finite dimensional) representation of G Character $\mathcal{X}_{e}: G \rightarrow G$ class function $\mathcal{X}_{e}(g) = \operatorname{tr}[P(g)]$

(2) $\frac{1}{161} \sum_{g \in G} \chi_{e}^{*}(g) \chi_{e}(g) = \begin{cases} 0 & \text{if } e_{i} \neq e_{i} = \\ 1 & \text{if } e_{i} \approx e_{i} \end{cases} = \begin{cases} e_{i} e_{i} \\ e_{i} \neq e_{i} \end{cases}$ $\langle \chi_{e_{i}}, \chi_{e} \rangle$ Irreducible characters form a Complete basis for the space of class fonctions i) # of distinct irreps of G = # of conjugacy Clarifies of G One final point? To see this lets introduce de <u>regular representation</u> $\mathcal{C}_{reg}: \mathcal{C} \rightarrow \mathcal{O}(\mathcal{C}_{r}^{161})$

Basis vectors [Ég ge 6] èg = (0)
$\langle \hat{e}_{g_i}, \hat{e}_{g_j} \rangle = e_{g_i}^{\dagger} \cdot e_{g_j} = S_{ij} $ $\begin{pmatrix} \hat{i} \\ \hat{o} \\ \hat{o} \end{pmatrix}^{\vee} i^{\dagger} h^{\dagger} e^{\dagger} e^{\dagger}$
$e_{reg}(g) \dot{e}_{g'} = \dot{e}_{gg'}$
$\begin{bmatrix} e_{res}(s) \end{bmatrix}_{ij} = e_{g_i}^{t} \cdot e_{g_j}(g) \hat{e}_{g_j} = e_{g_j}^{t} \cdot \hat{e}_{g_j} = \begin{cases} 1 & \text{if } g_{ij} = gg_{j} \\ 0 & \text{otherwise} \end{cases}$
Pf: Let F be a days for s.t. $\langle \mathcal{K}_{e_i}, f \rangle = \sum_{g \in G} \mathcal{K}_{e_i}^*(g) f(g) = 0$ for all impose if we show f=0 then we're done
for each irrep P

 $f_{i} = \sum_{g \in G} f(g^{-1}) Q_{i}(g)$ $f_{i}(g') = \sum_{g \in G} f(g') e_{i}(g) e_{i}(g')$ = Z f(g-') (gg') > Schwislemma pt 2 fi= > Id $= \sum f(s') P(g') P(g'gg')$ but $tr(f) = |G| \langle f, \chi_{e} \rangle = O$ = P(s)Z F(s"-1)P;(s" 9"eG -) f;=0 Thisistive for every Irrep-) true for =**@**;()')£; every sum of irreps => $f_{reg} = \sum_{g \in G} f(g^{-1}) Q_{reg}(g) = O$

 $\int f(g^{-1}) (f(g_{1}^{-1}) - z) = \int f(g_{1}^{-1}) (f(g_{1}^{-1})) = \int f(g_{1}^{-1}) (f(g_{1}^{-1})) = 0$ $\int f(g_{1}^{-1}) (f(g_{1}^{-1})) = f(g_{1}^{-1}) = 0$ $O = f_{reg} \dot{e}_{E} = \sum_{g \in G} f(g^{-1}) \hat{e}_{reg}(g) \dot{e}_{E}$ => f=0 > meducible characters spon the space of class functions =) It of meps of agroup = It of conjugacy classes] Last class - Summaria irreps for a group

in Character tables - Character tables conjugacy clauses are always square Turning to Physics: Electrons in Solids (Ignore interactions for now) Hardtowen H= In + VQ) V(x) external potential due to some intle crystal

 $G \subset E(3) = IR^{3} \times O(3)$ Study group of symmetries 9= { R |] } $V(\overline{g}^{1}\overline{x}) = V(\overline{x})$ $g\vec{x} = [R]\vec{x} + \vec{d}$ The group of rigid symmetries of a crystal is called a Space group Defining feature à a crystalis discrete translation symptry Every space group 6 has a subgroup " primitive battice vectors" $T = \left\{ \left\{ E | \Sigma_n; \hat{e}_s \right\} | n_s \in \mathbb{Z} \right\}$ è, - linearly indep. Vectors

TAG - Bravais lattice at translations is a normal subgroup of a space group $V(\vec{x} - \Xi n_i \vec{e}_i) = V(\vec{x})$ Exi 2D Bravais lattice $\dot{e}_{i} = (\alpha, \sigma)$ $\dot{e}_{i} = (\alpha, \alpha)$ er/ To n, e, +n, e, $(RIJSEIVSRIJ)^{-1}$ = {E1Rv}

Primitive unit cell of T: connected subspace IR3 sit. no her ets can be related by an element of T Lecture 2: \mathbb{R}^{3} - Set of cosets of T_{in} $\mathbb{R}^{3} = \sum \{ E \mid \sum_{i} e_{i} + \hat{v} \} \mid \hat{v} \in \mathbb{R}^{3} \}$ Concretely: given {ë, } primitre lattice vectors $\{Z_{\alpha_i}\vec{e}, \alpha_i \in (-\frac{1}{2}, \frac{1}{2})\}$ (d1, d2, -) - Reduced coordinates

· ·		ez/T		· ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	
Lets look	at how T	15 représent	ed on qu	antun St	alej
T=ţ=Ę	$n_i \dot{e}_i \longrightarrow \dot{e}_i$	申·王 = 以表 c - 山(テ-子)	$\mathcal{O}(\mathcal{H})$	Unitory o Space	ps an	Hilbert

 $\int U_{t_1} U_{t_2} = e^{-\frac{1}{2}e^{i\cdot t_1}} e^{-\frac{1}{2}e^{i\cdot t_2}} = e^{-\frac{1}{2}e^{i\cdot t_2}} = e^{-\frac{1}{2}e^{i\cdot t_1}} = e^{-\frac{1}{2}e^{i\cdot t_2}} = e^{-\frac{1}{2}e^{i\cdot t_1}} = e^{-\frac{1}{2}e^{i\cdot t_2}} = e^{-\frac{1}{2}e^{i\cdot t_1}} = e^{-\frac{1}{2}e^{i\cdot t_1}} = e^{-\frac{1}{2}e^{i\cdot t_2}} = e^{-\frac{1}{2}e^{i\cdot t_1}} = e$ EUt, Ut=UtzUt, abelian We can simultaneously diagonalized every UZ -> find irreducible reps of T UZ = (1) $u_{\tilde{t}}|\psi\rangle = \lambda_{\tilde{t}}|\psi\rangle$ for all $\tilde{t}eT$

 $\lambda_{\delta} = \mathcal{I} \qquad \lambda_{t_{1}+t_{2}} = \lambda_{t_{1}}\lambda_{t_{2}} \quad : \vec{k} \cdot \vec{t}$ $\lambda_{t_{1}} = \lambda_{t_{1}} \quad : \vec{k} \cdot \vec{t}$ $\lambda_{z} = 1$ crystal momentum R babels irreps of Bravais lattice T $[H, U_{\tilde{f}}] = 0$ for ever $\tilde{t} \in T$ By Schur's lemma $U_{\tilde{t}}|V_{k}\rangle = e^{-it'h}|Y|$ $\rightarrow \int H|V_{nk}\rangle = E_{nk}|V_{nk}\rangle$ Bloch's theorem

 $U_t | \Psi_{nk} > = \overline{e}^{ik \cdot t} | \Psi_{nk} >$ $\Psi_{nk}(\vec{r}-\vec{t}) = \Theta_{nk}(\vec{r})$ e Unk(r) ~ Unk(r-z) = Unk(z) periodic What are the distinct irreps of T? two irreps \vec{k}_1, \vec{k}_2 are the same if $e^{-i\vec{k}_1\cdot\vec{t}} = e^{-i\vec{k}_2\cdot\vec{t}}$ $V\vec{t}$ $(\vec{k}_1 - \vec{k}_2) \cdot \vec{t} = 2\pi n_{\vec{t}} \quad \forall \vec{t}$

	- (k,-k,)·è, Vectors	$=2\pi n_i$	for our primitive boiltie
to sc	olve this, can intr	odue the <u>reci</u>	procal lattice
) ntrodue b;	5.4. b;	$\dot{e}_{j} = 2\pi S_{ij}$	Prinitive reciprocal lattice vectors
k ($i_{1} - k_{2} = \sum_{i}^{N} m_{i} b_{i}$	e	$Im_{b_{i}}$ Im_{c}
. .		reciproca) athree	. .
Sp	nace of distinct	ineps) prim	vine unit cell in reciprocal

ki-reduced coordinator of k		•	· · · · · · · · · · · · · · · · · · ·	· · ·		· · ·	•		ιt ¹					۲ ۲	E	S))) () (Λ	1/ k	ı J	G	2)^ て	e 1			(<u> </u>	- 7	Ż	• • • • • • • •		· · ·			· · · · · · · · · · · · · · · · · · ·	•	· · ·			•
k ⁱ - Leanen cemanatol at k	•	•	• •	 •	• •			•		•		•		,	•	•				ſ.			J		°.		1		. 1		0	ſ	•	$\frac{1}{1}$		•				•	•		• •	•••	
										•				K	i					, u	11	Nel	U,		نك	U	d		14	0	ſ	7		k				 •							
					• •																																						• •	• •	
	•		•		• •						•	•	•	•	•		•			•																•							• •	• •	•
			•		• •					•	•		•		•	•																					•						• •) O	
			•		• •					•																											• •						• •	1 0	
			• •		•			•				•																															• •		
					• •																																						• •		
																																											. ,		
					• •																																						• •		
					• •																																						• •	• •	
			•		• •					•	•	•	•	•																							•		•				• •	• •	
	•		•		• •					•	•	•	•	•		•	•		•	•						•										•							• •		•
· · · · · · · · · · · · · · · · · · ·			•		• •			•				•																															• •		
	•				• •						•		•	•	•					•																•							• •		
																											•												•		•				•