Lecture 17	Announcements: Final presentation suggested topics will be posted after class
· ·	· Engil me your choice by 11/12 · Presentation Logistics: 12/3, 12/3, 12/10 20 min + Smins gnestions
Recaps Hybri	b Warnier fins and polarization I
d, pole ma	ment per unit volume

. .

 $-\frac{e}{(2\pi)^3}\int d^3k \, tr(\dot{A}(k))$ $\vec{p} = \frac{Ne}{v} \vec{x}_{o}$ Ionic center of charge in the unit cell $= \frac{1}{\nu} \left(Ne\tilde{x}_{0} - e \sum_{a=1}^{N} \int d^{2}k_{\perp} t_{i} \varphi_{i}^{a}(k_{\perp}) \right)$ i (p^a(k₁) e - eigenvalues of the Wilson loop in the (- direction p only well-defield modulo et for for tot

Can we extend this logic -> get in all 3 directions	Functions exponentially bealted
Simultaneously diagonalize PX:P and	Pxjb
We can only do this if	[Px, P, Px, P] = 0
Take our wavepacket state $15 > = \sum_{a=1}^{N} \frac{N}{(a_{1})^{3}} \int d$	3k 4 k > fat
$[P_{x_i}P_{x_j}P_{j}] f > = ?$. .

 $P_{X;P}|F > = \sum_{a=1}^{N} \sum_{n=1}^{N} \int d^{3}k |\Psi_{ak} > [iD;f]_{ak}$ $\left[D,F\right]_{Ak} = \left(\frac{\partial f_{ak}}{\partial k_{i}} - i\sum_{b=1}^{N} A_{i}(b)f_{bk}\right)$ $[P_{X_i}P, P_{X_j}P]] = \sum_{\alpha=1}^{N} \frac{\gamma}{P_{\alpha\beta}} \int d^3k |P_{\alpha}k\rangle [iD_i[iD_jf] - iD_j[iD_jf]],$ $= -\sum_{n=1}^{N} \sum_{j=1}^{T} \int dk | Y_{nk} > [D_j D_j F - D_j D_j F]_{ak}$ $D_{j}D_{j}F = \left(\frac{\partial}{\partial k_{i}} - iA_{i}\right)\left(\frac{\partial}{\partial k_{j}} - iA_{j}\right)f$ = $\frac{\partial^{2}F}{\partial k_{i}} - iA_{i}\frac{\partial F}{\partial k_{j}} - \frac{\partial}{\partial k_{i}}(A_{j}F) - A_{i}A_{j}f$

 $D_{i}D_{j}f - D_{j}D_{j}F = \frac{2^{2}F}{2^{3}k_{i}\partial k_{j}} - iA_{i}\frac{2F}{\partial k_{j}} - \frac{2}{\partial k_{i}}(A_{j}F) - A_{i}A_{j}F$ $-\left[\frac{2^{2}F}{2^{k}i^{2}}-iA_{j}\frac{2^{2}F}{3^{k}i^{2}}-\frac{2}{3^{k}i^{2}}(A_{j}F)-A_{j}A_{j}F\right]$ $-i\left[\frac{\partial A_{i}}{\partial k_{i}}-\frac{\partial A_{i}}{\partial k_{j}}-i\left[A_{i},A_{j}\right]\right]f$ - in Fit (norabelian) $\Pi_{ij}^{(k)} = \frac{\Im A_i}{\Im k_j} - \frac{\Im A_j}{\Im k_i} - i [A_i, A_j]$ - Berry Curvature

> The Berry curvature $\mathcal{N}_{ij}(k)$ tells us by how much Projected position operators fail to commute $[P_{x_i}P, P_{x_j}P]] = \frac{2}{(2\pi)} \int_{a_k} \frac{1}{2} \int_{b_{x_j}} \frac{1}{(k)} \int_{b_k} \frac$ unless $\Omega(k) = 0$ For all k, we cont diagonalie Px, P and Px, P. Recall that for Hybrid / Wanner Fis $H|Y_{nk}\rangle = E_{nk}|Y_{nk}\rangle$ $= E_{nk}|Y_{nk}\rangle = E_{nk}|Y_{nk}\rangle$

 $\sum_{n=1}^{N} |\Psi_{nk}\rangle = |\Psi_{nk}\rangle = |\Psi_{nk}\rangle$ H(k) 10, k>= Enk 10, k> choose Unalk) s.t. [I] a, ki, ki) Was an analyticfor of Electric Field H(k-Eot) $k_{i} = \frac{i \left(\frac{1}{k_{i}} \right)}{\left(\frac{1}{k_{i}} \right) = \left(\frac{1}{k_{i}$ $|W_{ark_2}\rangle = \frac{1}{2\pi} \int dk_i |\Psi_{a,k_i,k_1}\rangle e^{ink_i}$ To severalized look for NAR periodic untergy

 $V_{\Lambda q}(k)$ s-1. $|\overline{\Psi}_{ak}\rangle \approx \sum_{k=1}^{N} |\Psi_{ak}\rangle |\Psi_{ak}\rangle |I_{ak}\rangle |I$ of every component of th $U_{\tilde{t}}|\tilde{V}_{ak}>=\tilde{e}|\tilde{V}_{ak}$ I we and this, then $|W_{ak}\rangle = \frac{v}{p_{ak}}\int J^{3}k |\Psi_{ak}\rangle e^{-ik\cdot R}$ will be exponentially lacalized $-1\Gamma - RI/S$ $<\Gamma |W_{aR} > = W_{aR} (\Gamma) \longrightarrow C$ Warnier Function

Impositent properties $\langle W_{all} | W_{bll} \rangle = \left[\frac{V}{(2\pi)} \right] \int d^{2}k d^{2}k' \langle \Psi_{all} | \Psi_{bll} \rangle e^{ik(k\cdot R-l_{b}'\cdot R')}$ $= \int_{ab} \frac{V}{(2\pi)} \int d^{2}k e^{ik(R-R')}$ Under Branais = Dab ORR' lattice trailations $U_{\overline{t}}|_{WaR} > = \frac{N}{(2\pi)^3} \int d^3k \ U_{\overline{t}}|_{\overline{t}}|_{Ak} > e^{-ik \cdot R}$ $U_{\overline{t}}|_{WaR} > = \frac{N}{(2\pi)^3} \int d^3k \ U_{\overline{t}}|_{Ak} > e^{-ik \cdot R}$ = Sab SRR' $= \frac{v}{(2\pi)^3} \int d^3k |\tilde{V}_{ak} > e^{-ik \cdot (R+\tilde{t})} = |W_{a}\tilde{R}+\tilde{e} >$

Bis picture of How we find Wommer functions $H \rightarrow \{ \{ \Psi_{nk} \} \}_{n=1}^{N} \qquad \bigcup_{n \in \mathbb{N}} (k) - N \in \mathbb{N} \text{ unitory}$ $|W_{an}[U] > = \frac{v}{p_{an}} \int d^{2}k \left[\frac{1}{h_{an}} \right] V_{na}(k) e^{ik \cdot R}$ Metric for localization $G[U] = \sum_{a=1}^{N} \langle W_{ao}[U] | x^2 | W_{ao}[U] \rangle - \langle W_{ao}[U] | x | W_{ao}[U] \rangle$ discreter BZ - numerically minimize G as a Finitimal of U -> maximally bearred Wanner Functions

Marzari et al Rev Mod Phys $Px^2P = PxQxP + PxPxP$ core bonds

Careats D Numerical Minimization Might not conveyed
night not give us somethry exponentally localized
D If we want WFs that respect the symmetries of a space group, we need to modify this precedure
It is not always the case that a given set of bands has exponentially bocalised, symmetric Warnier Functions
3 Wannier centers < War X War >

 $= \left(\frac{v}{e\pi}\right)^{2} \int d^{2}k d^{2}h' < \tilde{P}_{ak} |\tilde{X}| \tilde{P}_{ak} > e^{iR(k-k')}$ $\left(\frac{\sqrt{2}}{2\pi^{3}}\right) \int d^{3}k d^{3}k' \left(i\frac{2}{2\pi}S(k-k')+\tilde{A}_{aa}(k)S(k-k')\right) e^{ikk'}$ $\overline{A}_{a}(k) = \langle \widetilde{U}_{a}, | \frac{\partial \widetilde{U}_{b}}{\partial c} \rangle$ $\vec{R} + \frac{v}{(2\pi)^3} \int d^3k \vec{A}_{aa}(k)$ diagonal aa notrix element of A - not an ergenvahe la > Wanner conters are not gauge invariant

 $Z < W_{qR} | \hat{x} | W_{qR} > = N \hat{R} + \frac{v}{R} S \hat{G} k + \hat{A}(k)$ (electronic contribution to P Two main uses for Wannier Functions DWFs reduce the dimensionality of Schrödnyer Eqn Scatterny ~ State, N st N states of interest -> W_{aR} > W_{aR} > W_{aR} > W_{aR} > W_{aR} > $W_{bR'}$ > = $h^{ab}(R-R')$ core bords

•	•	•			, , , , , ,	1	-^-	•	provny					, whether							or net									00	1 1	лł)) ,	ll v		localred						WFs exst,						
		•				h	ve	y.	Ś)]]		0	d	J	SO	ØV	~e	N		1	0	D ¢	40	s 6)(Cel		Į	S	U	10	14	<u>s</u> 7	<u>[</u>											• •			
•	•			•	•	•	• •			•	•		•		•	•	•									•	•	•						•	•			•	•	• •	•	•	•		• •	•	•	•
							• •													-																									• •			
							• •												•	-																								•	• •			
•							• •								•	•	•			-																				•					• •			
•		•	•			•	• •								•	•	•			•								•	•	• •		•			•		•			•				•	• •			
							• •																							• •					•					• •				•	• •			
		•					• •													•									•	• •		•			•		•			• •					• •			
							• •													•									•	• •															• •			
		•					• •							•																• •															• •			
																				-																												
		•					• •													•								•	•											• •					• •			
							• •												•	-																								•	• •			
•			• •				• •								•	•	•	•	•	•							•	•		• •										• •				•	• •			
•							• •								•	•		•	•										•	• •										• •				•	• •			
•			• •				• •								•	•	•	•		•							•		•	• •					•					• •				•	• •			
•			• •				• •								•	•		•	•								•			• •															• •			