Lecture 1 Welcone to Phys S98GTC "Modern Electronic Structure Teory" Goals. O Understand the foundations of group heary in solid state physics Develop tools to analyze & evaluate research Papers on topological Materials 3 Learn to apply Berry phase techniques to analyze electronic properties of topological materials

Rough guide to topics; 1) Space group symmetries 2) Berry phases and Wanner Functions 3) Band topology (1) Topological crystalline insubitors course mebsitei courses physics, Illinois edu/phys598gtc -HW (5) (- graded an completeness Course components - Class participation

- Final presentations Office hours! TBS via Zoon I. Review of/Intro to Group Theory Useful Resources · Dresselhaus "Applications of group theory to the physics of solids." · Bradley & Crachenell "Mathematical Theory of Sympling in solids"

'Serre "Lonear repr	-esentations of finite groups ()
Stertry points $H = \frac{p^2}{2m} + V(x)$	
Schrödnyer Eqni	$H \Psi > = E \Psi >$
Find transformations; $\hat{X} \rightarrow \hat{X}'$	
ドローム レーー<アレー	
Symmetries; transformations	that leave the Schrödiger Eqn

uncharged H	-> H'= H
This course's marnly interel	ted in transformettrans of space
$\bar{\mathbf{X}}' = \mathbf{R}\bar{\mathbf{X}} + \bar{\mathbf{J}}$	R - 3×3 rotation or reflection
ρ̃´= Rp	~ R-1=RT ~ Orthogonal
	J- translation vector
Basic Intuitne Facts	j
() If I can firs	have two transformations, I t do one transformation and then

	do the other. This is also a transformation
1 1	 x ->x is a transformation - 1 dentity f ->p transformation
· ·	3) We an always undo a transformation - inverse transformations exist
	a set G is called a group f; 1) there is a binary operation (product) s.t. for any gieg, gieg,

	$g_{1}, g_{2} \in G$ and $g_{1}, (g_{2}, g_{3}) = (g_{1}, g_{2}), g_{3}$
. .	(2) there exists EEG s.t. for all gEG There exists EEG s.t. for all gEG
	E.g = g. E=g E is the identity elevent (3) if $g_{G}G_{f}$, there exists $g^{-1}S_{f}$.
· ·	$g \cdot g^{-1} = g^{-1} g = E$
Examples of	Scarps; () Unitary operators on (d-dimensional) Hilbert sporce U(d) - the set of dxd matrices VEV(d) s.t.

	V += γ -1
	· BINAIN OPERATION: MATRIX MUHARA
	• Binary operation: matrix multiplication $V_1^+ = V_1^{-1}$ $V_2^+ = V_2^{-1}$
	$(V_1V_2)^{\dagger} = V_2^{\dagger}V_1^{\dagger} = V_2^{\dagger}V_1^{\dagger} = (V_1V_2)^{\prime}$
	· E 13 dxd identy matrix
	r inverces by construction
2) The	Scorb of Lotation in 3D
tle S	pecial orthogonal group SU(3)
Je	pecial orthogonal group SO(3) L V +1 transpore 15 3×3 matrices inverse
	INVER E

3) Translations in 3D R ³
· elements gre vectors VER3
binary operation is vector addition t
identity; Ö vector
V - C - V estavat
each $V \in ID^3$ defines a transformation $\vec{x} \rightarrow \vec{x} + \vec{v}$ it is a subcet of G''
Some important facts about groups i
Given a grap G we can consider subsets HCG such that H is also a grap E subgroup (H <g)< td=""></g)<>

· · · · · · ·	· · ·	His a subgroup A': EEH l'Hisa subgra
		· His closed un br multiplication of G?
· · · · · · ·	· · ·	His a subgroup it: EEH His closed un br multiplication of G? high, high, high the H His closed under Multiplication
· · · · · · · · · · · · · · · · · · ·	· · · ·	'H is closed under investes helt con high
	· · · ·	Examples: consider SO(5) and consider. Fix n
	 . .<	$\{ \text{rotations about the axis } \hat{n} \} \subset SO(3)$ SO(2) < SO(5)
	 	- translation group $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}^3\}$

G is a subgroup of G. IF H is a subgrap	
eFG AND $H\neq G$	$T = \left\{ n_1 \tilde{t}_1 + n_2 \tilde{t}_2 + n_3 \tilde{t}_3 \right\} n_1 \in \mathbb{Z} $
proper subgroup of 6	T< 112 ³ - Subgroups of this formare called Bravais battices
H≤G - H, s a subgraup of G	called Bravaus Lattices
H <g -="" hisa="" proper<br="">Subgroup of G</g>	
We can the structure	use the subgroups $H \leq G$ to learn about e of G_{3}

Given a group 6 and a subgroup H, he can define,
For any geb a <u>right colet</u> of H
$Hg = \{h \cdot g \mid h \in H\}$
Inportant Fact: Every element g'EG is in one and only, one night coset of H.
Proof; First, we want to show that every 5'eG is an atleast one right coret. Recall EEH
Hg'= Ehg' heH} = Eg'= g'

to show this is the only one we need to show that $g' \in Hg_1$ and $g' \in Hg_2 \implies Hg_1 = Hg_2$ g'= hz·Gz 9'= h1:91 $h_{1}g_{1} = h_{2}g_{2}$ $\Rightarrow h_{2}h_{1}g_{1}=h_{1}h_{2}g_{2}=g_{2}$ $= h_2^{-1}h_1 = g_2g_1^{-1} \in H$

It is closed under multiplication:	$H_{9,9_1}^{-1} = H_{1}$
	$Hg_{z} = Hg_{1}$
=) every element of G 15 in (right collects of H partition the	exactly one right caset - Scoup
$G = H U H_{9_1} U H_{9_2} - U$	
" coset decomposition	

 $\left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\$ (for n=4) $H_{S_1} \xrightarrow{(\gamma_1, H_{S_1}, (\gamma_3, H_{S_3}))} G$ $\{E, g_1, g_1, \dots, g_{n-1}\}$ c- coset representatives n-number of right cosets the index of H in G n=1G:H1 Seland Sylow