Group 5 presents...

0

SYNTHESIS OF ANTIHYDROGEN IN A

CUSP TRAP

Enomoto, Kurota, Michisimo, et al. (2010) ODI: 10.1103/PhysRevLett.105.243401

OUTLINE

- 01 Background and summary
- 02 Main results
- 03 Critical analysis
- 04 Citation analysis + future directions

BACKGROUND

Antimatter

 Quantum field theory predicts matter and antimatter.

CPT Symmetry

- Physical laws are invariant under charge conjugation (C), parity inversion (P), and time-reversal (T).
- Testing CPT tests quantum field theory

https://newatlas.com/physics/what-is-antimatterexplainer-primer/ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.1 4 21.251301

SUMMARY

- **1. Antiprotons from CERN antiproton decelerator**
- 2. Radioactive Sodium-22 positron source
- 3. Cusp trap consists of superconducting anti-Helmholtz coil and stack of multiple ring electrodes (MRE)
- 4. Scintillators detect antiproton annihilations

6

SUMMARY

- 1. Inject and cool positrons
- 2. Compress positrons using rotating electric field
- 3. Compressed positrons moved to nested trap
- 4. Place antiprotons into nested trap
 - i. neutral antihydrogen forms, then escapes trap
- 5. Highly excited antihydrogen are fieldionized
 - i. antiprotons accumulate at fieldionization trap (FIT)
- 6. FIT-stored antiprotons periodically released

7

Methodology: Penning trap - uses magnetic fields and electrodes to trap particles inside a small region.

Successful trapping, hot mixing had 4 times lower annihilation rate

Trapping mechanism only works on ground state atoms

9

NEGATIVE CHARGE

ON LOWER CAR

Field ionization trap populations

- The following figures show the counts (synchronized to FIT release) from 3-d track detector during mixing of antiprotons.
- Peak is seen in case of positrons in nested trap. Background is due to residual gas
- If positrons are r-f heated the peak is reduced

Variation in number of ionized $\overline{\mathbf{H}}$

Experiment started with 3E5 antiprotons and 3E6 positrons in nested trap

 Number decrease is hypothesized due to separation of positron and antiproton clouds in nested trap

Variation in number of ionized $\overline{\mathbf{H}}$

- Rydberg anti-Hydrogen formation efficiency of 2% which increases to 7% by reducing the initial population of antiproton.
- Smaller antiproton populations implies earlier peaking of anti-Hydrogen synthesis rate and shorter synthesis periods

Antiproton annihilation location

- Most annihilation occurs within the nested trap due to residual gas
- Broadening of the peak is due to axial separation of anti-protons and positrons

Estimation of Q-number of $\overline{\mathbf{H}}$

- Number of Field-ionized antihydrogen atoms is determined by number of counts detected by 3-d detector compensated for isotropic angular distribution in 4π. Observation is consistent with n ~ 45,50.
- The field ionization simulations were conducted and are shown. The n ≥ 55 states are ionized before they reach the FIT.

CRITICAL ANALYSIS

Strengths

- Cusp trap is new and effective!
- Successfully made antihydrogen in cusp trap
- Makes use of existing CERN facilities
- First step toward microwave spectroscopy of antihydrogen
- Strong justification of presented results and conclusions with suitable control experiments

CRITICAL ANALYSIS

Weaknesses/Criticisms

- Low antihydrogen synthesis efficiency
- Intermediate measurement techniques not given
- Minimal discussion of positron and antiproton density effect on efficiency
- Simulation results mentioned once but never discussed in context of experimental results
- Didn't measure beam polarization
- Didn't detect low-n states
- Didn't say whether planned measurement was feasible
- Didn't utilize position resolution
- Too much discussion of future experiment
- Lack of supplementary material

CITATIONS BY FIELD AND YEAR

of Citations per Year

- Relevance of paper slowly waning since 2015.
- Relevant to:
 - OFundamental/particle physics
 - OOptics
 - OChemistry
 - OA few others

Testing CPT Symmetry & Weak Equivalence Principle

- Production of Antihydrogen is
 - first step to antimatter
 - measurements
 - OHyperfine spectroscopy
 - Image: Exact experiment suggested in our paper's Introduction

A source of antihydrogen for in-flight hyperfine spectroscopy

Testing CPT Symmetry & Weak Equivalence Principle

Production of Antihydrogen is

first step to antimatter

measurements

OHyperfine spectroscopy

O1S-2S spectroscopy

Uses trapped antihydrogen

Observation of the 1S-2S transition in trapped antihydrogen

M. Ahmadi¹, B. X. R. Alves², C. J. Baker³, W. Bertsche^{4,5}, E. Butler⁶, A. Capra⁷, C. Carruth⁸, C. L. Cesar⁹, M. Charlton³, S. Cohen¹⁰, R. Collister⁷, S. Eriksson³, A. Evans¹¹, N. Evetts¹², J. Fajans⁸, T. Friesen², M. C. Fujiwara⁷, D. R. Gill⁷, A. Gutierrez¹³, J. S. Hangst², W. N. Hardy¹², M. E. Hayden¹⁴, C. A. Isaac³, A. Ishida¹⁵, M. A. Johnson^{4,5}, S. A. Jones³, S. Jonsell¹⁶, L. Kurchaninov⁷, N. Madsen³, M. Mathers¹⁷, D. Maxwell³, J. T. K. McKenna⁷, S. Menary¹⁷, J. M. Michan^{7,18}, T. Momose¹², J. J. Munich¹⁴, P. Nolan¹, K. Olchanski⁷, A. Olin^{7,19}, P. Pusa¹, C. Ø. Rasmussen², F. Robicheaux²⁰, R. L. Sacramento⁹, M. Sameed³, E. Sarid²¹, D. M. Silveira⁹, S. Stracka²², G. Stutter², C. So¹¹, T. D. Tharp²³, J. E. Thompson¹⁷, R. I. Thompson¹¹, D. P. van der Werf^{3,24} & J. S. Wurtele⁸

Testing CPT Symmetry & Weak Equivalence Principle

Production of Antihydrogen is

first step to antimatter

measurements

OHyperfine spectroscopy O1S-2S spectroscopy

OAntihydrogen charge

An experimental limit on the charge of antihydrogen

C. Amole¹, M.D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche^{4,5}, E. Butler^{6,7}, A. Capra¹, C.L. Cesar⁸, M. Charlton⁹, S. Eriksson⁹, J. Fajans^{3,10}, T. Friesen¹¹, M.C. Fujiwara¹², D.R. Gill¹², A. Gutierrez¹³, J.S. Hangst^{7,14}, W.N. Hardy^{13,15}, M.E. Hayden², C.A. Isaac⁹, S. Jonsell¹⁶, L. Kurchaninov¹², A. Little³, N. Madsen⁹, J.T.K. McKenna¹⁷, S. Menary¹, S.C. Napoli⁹, P. Nolan¹⁷, K. Olchanski¹², A. Olin¹², A. Povilus³, P. Pusa¹⁷, C.Ø. Rasmussen¹⁴, F. Robicheaux¹⁸, E. Sarid¹⁹, D.M. Silveira⁸, C. So³, T.D. Tharp³, R.I. Thompson¹¹, D.P. van der Werf⁹, Z. Vendeiro³, J.S. Wurtele^{3,10}, A.I. Zhmoginov^{3,10} & A.E. Charman³

Testing CPT Symmetry & Weak Equivalence Principle

Production of Antihydrogen is

first step to antimatter

measurements

OHyperfine spectroscopy

O1S-2S spectroscopy

OAntihydrogen charge

O Antihydrogen mass

Freefall is observed

Mass measurement ongoing

No violations of CPT Symmetry or Weak Equivalence Principle observed yet using antihydrogen.

THANK YOU QUESTIONS?