Quantum Position Verification Quantum
Position
Verification
Team 8
Yuta Hirasaki, Wenrong Huo,
Yudi Huang, Jierui Hu,
Wenhan Hua and Soroush Hoseini
Aference:

Team 8

Reference:

– Allerstorfer, Rene, et al. "Making existing quantum position verification protocols secure against arbitrary transmission loss." arXiv:2312.12614 (2023).

Key based cryptography
Credit card

ကြွ

information

You (sender) Amazon (receiver) Credit card

Key based cryptography
Credit card

<u>ଟେ</u>

information

You (sender) Amazon (receiver) Credit card

Position based communication

Quantum position verification verifies the position securely!

Classical Position Classical Position

Verification (CPV)

- Frame for position verification? – A

platform to work on

- CM – Cartesian coordinate systems

(or others)

- Mass, position, force...

- platform to work on
- (or others)
	- Mass, position, force…
- -

Why space-time diagram in CPV?

- diagram
	- Similar to what we want!
- Convention:
	- quantum signal

CPV: Setup

-
- CHA SERIP
Tripperson Control City
Trippers was a proved Verifiers use an approach to verify
The prover

CPV: Transmit Signal

- **CPV: Transmit Signal**

 Simple Protocol

 V_0 and V_1 each send a classical bit of verification information: $x, y \in (0,1)^n$ sequence
	- Synchronization: x, y arrive

CPV: Feedback

– Position Verification:

- P calculate: $F = XOR(x, y)$ and send it back. V_0 and V_1 verify F. Timing and Accuracy → Verification

Attacks on CPV

- Two Colluding Attackers can do as follows:
	- send each other a copy
	- Using their copies of x, y Alice and Bob independently calculate $F = XOR(x, y)$, verify

 $-$ QPV BB84

 1 (100) \pm 111) $\frac{1}{2}$ (1997 + 1447),

 $-$ QPV BB84

- 1 (100) \pm 111) $\frac{1}{2}$ (1997 + 1447),
- V_0 and V_1 send x, y such that they arrive simultaneously with Q_2 at P

– QPVBB84

- 1 (100) \pm 111) $\frac{1}{2}$ (1997 + 1447),
- V_0 and V_1 send x, y such that they arrive simultaneously with Q_2 at P
- Basis function (,) ଶ : Project Q_2 onto Computational basis or Hadamard basis.
- Computational basis: $|0>$ and $|1>$ $\begin{array}{ccc} & & \downarrow & \bullet & \bullet \\ & & V_0 & & P \end{array}$
- Hadamard basis: $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$

– QPVBB84

- 1 (100) $\left| \right|$ $\frac{1}{2}$ (1997 + 1447),
- V_0 and V_1 send x, y such that they arrive simultaneously with Q_2 at P
- V_0
- compares it with F to compare V_0

Attack on QPV

– Pre-Shared Entanglement

– Alice and Bob share entangled pairs (typically EPR pairs) before the QPV protocol begins.

Attack on Quantum Position Verification

- Pre-Shared Entanglement
	- Alice and Bob share entangled pairs (typically EPR pairs) before the QPV protocol begins.
- Teleportation Process
	- Using quantum teleportation, Alice can transfer the intercepted quantum state to Bob using their entanglement. This happens instantaneously across any distance. $\begin{bmatrix} Q_1 \end{bmatrix}$ (Entanglement swapping.)

Attack on Quantum Position Verification

- Pre-Shared Entanglement
	- Alice and Bob share entangled pairs (typically EPR pairs) before the QPV protocol begins.
- Teleportation Process
	- Using quantum teleportation, Alice can transfer the intercepted quantum state to Bob using their entanglement. This happens instantaneously across any distance. (Entanglement swapping.)

– Simulating the Prover

– After receiving classical information, sends the appropriate response to the

-
- Limitations with QPV

In general, all QPV protocols are weak

against the use of entangled pairs

The goal is to prove the location of a fair

user easily, while attackers would need

infeasible amounts of quantum

resourc

Requirement for QPV

- Transmission loss can significantly impact QPV security.
- By selectively choosing when to respond and when to remain silent, Comparison Comparison Internal Comparison Internal Strangent Corpus
Consider the security of the selectively choosing when to
respond and when to remain silent,
the attackers reduced the overall
chance of being detected.

How do we overcome transmission loss?

– Answer: QPV with commitment, i.e. cQPVBB84 protocol

– Making commitment:

1. Prover needs to identify before making a measurement whether or not OW do We overcome transmi

nswer: QPV with commitment, i.e. **cQPVBB84 protoc**

laking commitment:

1. Prover needs to identify before making a measure

they received it

2. This decision needs to be made before the basis c OW do We OVercome transmis:

mswer: QPV with commitment, i.e. cQPVBB84 protocol

laking commitment:

1. Prover needs to identify before making a measureme

they received it

2. This decision needs to be made before the bas

OW do We overcome transmission loss?

Inswer: QPV with commitment, i.e. cQPVBB84 protocol

Iaking commitment:

1. Prover needs to identify before making a measurement whether or not

they received it

2. This decision need mation (DPV with commitment, i.e. **cQPVBB84 protocol**
 aking commitment:

1. Prover needs to identify before making a measurement whether or not

they received it

2. This decision needs to be made before the basis choic

– New Requirement:

- $1(100) + 111)$ $\frac{1}{2}$ (1⁰⁰) $\frac{1}{2}$ (1²²),
- V_0 send Q_2 early such that it arrive at a time δ before x, y at P

$\textbf{cQPVBB84} \textbf{Protocol} \ \textbf{- Protocol} \ \textbf{- } V_{0. \text{ Prepare state } \mathcal{Q} = \frac{1}{\pi} (|00\rangle + |11\rangle), \textbf{Space Time}$

– Protocol

- 1 (100) (144) $2^{(\sqrt{66}) + (\sqrt{24})}$
- V_0 send Q_2 early such that it arrive at a time δ before x, y at P
- detection, 1 denotes a <u>non demolition detection $|Q_1|$ </u> event

- 1 (100) (144) $2^{(\sqrt{66}) + (\sqrt{24})}$
- V_0 send Q_2 early such that it at a time δ before x, y at P
- detection, 1 denotes a non demolition detection $\overline{Q_1}$ event
- P then receives x, y

$\textbf{cQPVBB84} \textbf{Protocol} \ \textbf{- Protocol} \ \textbf{- } V_{0. \text{ Prepare state } \mathcal{Q} = \frac{1}{\pi} (|00\rangle + |11\rangle), \textbf{Space Time}$

– Protocol

- 1 (100) (144) $2^{(\sqrt{66}) + (\sqrt{24})}$
- $-V_0$ send Q_2 early such that it arrive at a time δ before x, y at P
- detection, 1 denotes a non demolition detection $\overline{Q_1}$ event
- P then receives x, y
- V_0
- V_0 calculates $A = \langle XOR(x, y) | Q_1 \rangle$ and V_0 compares it with F

CQPVBB84 Protocol
- Protocol
- V_0 prepares the state $Q = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, space Time

– Protocol

- $1(100) + 111)$ $\frac{1}{2}$ (1⁰⁰) $\frac{1}{2}$ (1²²),
- V_0 send Q_2 early such that it arrive at a time δ before x, y at P
- detection, 1 denotes a non demolition detection $\vert Q_1 \vert$ event
- P then receives x, y
- V_0
- V_0 calculates $A = \langle XOR(x, y) | Q_1 \rangle$ and V_0 compares it with F

Summary

- **Summary**
• Quantum Position Verification (QPV) has advantages over Classical
Position Verification (CPV) due to No-cloning theorem.
Put there are of Warry Historians on ON (contract procession lase and Position Verification (CPV) due to No-cloning theorem.
- Quantum Position Verification (QPV) has advantages over Classical
• Position Verification (CPV) due to No-cloning theorem.
• But there are still many limitations on QPV, such as transmission loss, and
• may still be atta may still be attacked via quantum memory / pre-shared entangled pairs.

i.e. spin-photon entanglement for a quantum memory

which can overcome transmission loss. This protocol is also more secure.

Citation of the paper

Allerstorfer, Rene, et al.

"Making existing quantum position verification protocols secure against arbitrary transmission loss."

⁽Reproduced from inspire HEP 12/4/2024)

Critical Analysis Critical Analysis

• Cons:

• QPV is robust against classical interception

• No cloning theorem

• CQPV BB84

• CQPV BB84 Critical Analysis

SINGLET CONSISTS:

PV is robust against classical interception

• No cloning theorem

QPV BB84

• Improvement of past QPV protocols that

• Hera

• Hera

Pros:

- -
-
- Critical Analysis

Pros: co

 QPV is robust against classical interception

 No cloning theorem

 cQPV BB84

 Improvement of past QPV protocols that

 More secure against attackers Critical Analysis

• Cons:

• The experimental limitations of quant

• No cloning theorem

• No cloning theorem

• Consing the experimental limitations of quant

• Measuring the existence of a photoxy

• Measuring the exis Cons:

The experime

non demolitior

non demolitior

in demolitior
 Critical Analysis

• Cons:

• No cloning theorem

• No cloning theorem

• No cloning theorem

• Measuring the

• Measuri Fitical Analysis

FRIS Cons:

Successive different process of the experimental limitations of the coloning theorem

VBB84

Cons:

More different and the existence of without collapsing the existence of

More secure against **Pros:**

• QPV is robust against classical interception • The experiment

• No cloning theorem • non demolition • Measuring

• CQPV BB84 • improvement of past QPV protocols that • Heralding the enables full loss tolerance.
	- -
-

Cons:

- **Cons:**
● The experimental limitations of quantum
non demolition measurements
● Measuring the existence of a photon
without collapsing the state non demolition measurements
	- Measuring the experimental limitations of quantum
• Measuring the existence of a photon
• Measuring the existence of a photon
• Heralding the existence by using
• Heralding the existence by using
• teleportation the ef without collapsing the state **is:**

	The experimental limitations of quantum

	on demolition measurements

	• Measuring the existence of a photon

	without collapsing the state

	• Heralding the existence by using

	teleportation - the efficiency is low

	Se
	-
- experimental limitations of quantum
demolition measurements
Measuring the existence of a photon
without collapsing the state
Heralding the existence by using
teleportation the efficiency is low
erally, QPV is weak agains **Cons:**
• The experimental limitations of quantum
non demolition measurements
• Measuring the existence of a photon
without collapsing the state
• Heralding the existence by using
teleportation - the efficiency is low
• Ge quantum memories and entangled pairs