Hopping frustration-induced flat band and strange metallicity in a kagome metal

Ye, L. *et al.* (2024) 'Hopping Frustration-Induced Flat Band and Strange Metallicity in a Kagome Metal', *Nature Physics*, 20(4), pp. 610–614. Sebastiani Aguirre-Navarro, Layla Ahmed, Steph Armond, Anand Balivada, Arnav Batra

KAGOME METAL

- Any metal with a kagome lattice geometry
 - trihexagonal
 - symmetric
 - periodic
- Ni₃In (trinickle indium)
- Possesses strange metal properties

MATERIAL SYNTHESIS

- Ni₃In, Ni₃Sn synthesized with I₂ catalyst
- Cut to 5µm crystals with Ga-ion beam
- Examined with scanning transmission electron microscopy
- Measurements performed at National High Magnetic Field Laboratory (Los Alamos)

Scanning electron microscope image of Ni₃In crystals; Fig. S1 (b) from article's supplementary information

PHYSICAL MEASUREMENTS

C_p Measurements

- Crystals sintered together
- Two-relaxation-time method (NMR)
- T_1 (long) \rightarrow decay of nuclear spin magnetization M_z to thermal equilibrium value
- T_2 (short) \rightarrow decay of $M \perp B$ component to 0

Other measurements

- Cryostat for $\rho_{ab}(T)$
- Piston-type pressure cell for $\rho_{ab}(T, P)$
- Vibrating sample magnetometer for χ(q)
- Magnetization measurements at pulsed field facility

SPECTROSCOPY

- Angle-Resolved Photoemission Spectroscopy (ARPES)
- Used to probe band structure
- Performed at Beamline 7.0.2 (Advanced Light Source)
- Photon energy range 70-230 eV
- Energy resolution: <20 meV
- Momentum resolution: <0.01 $Å^{-1}$

Ni₃In ARPES measurements along (a) K-M-K-Γ and (b) M-Γ planes; Fig. S8 (a, b) from article's supplementary information

CALCULATIONS

- Ab initio Density Functional Theory (DFT)
- Vienna Ab Initio Simulation Package (VASP)
- PBE Generalized Gradient Approximation (GGA) functional to model exchangecorrelation energy
- Reciprocal mesh: 13 x 13 x 11 subdivisions
- Wannier90 code to construct tight-binding Hamiltonian from Ni 3d, 4s, In 5s states

(b) Flat band Wannier wavefunction and (a) DFT band structure for Ni₃In; Fig. S5 (b) and Fig. S11 (a) from article's supplementary information

EFFECTIVE MODEL

- Full-Potential Local-Orbital (FPLO) code used to construct model based on molecular orbitals
- Restricted to dominating Ni d_{xz}, d_{xy} atomic orbital contributions
- Produces four-band model
- Local magnetic susceptibility calculated
- Reciprocal grid of 24 x 24 x 24 subdivisions

(a) Band structure (red lines), (b) flat band, and (c) dispersive band for four-band model of Ni₃In; Fig. S6 (a-c) from article's supplementary information

RESISTIVITY

- Resistivity (ρ) exhibits a linear like dependence on T below 100K, when the expected dependence is T²
- Only at T < 1.5K \equiv T_{FL}, does the system show a response of ρ (T) \propto T² (inset)
- This is indicative of Fermi-Liquid behavior.
- The coefficient of T² for Ni₃In (0.25 $\mu\Omega$ cm K⁻²) is orders of magnitude larger than the upper bound estimated for Ni₃Sn (1x10⁻⁴ $\mu\Omega$ cm K⁻²)

HEAT CAPACITY

- At low T, a slight upturn is observed, deviating from the expected form $\gamma + \beta T^2$ (where γ is the Sommerfield coefficient and βT^2 is the phonon contribution
- For Ni₃In, $\gamma \approx 51.6$ mJ K⁻² mol⁻¹, a roughly fivefold increase from 9 mJ K⁻² mol⁻¹ for Ni₃Sn. This is an indication of Heavy Fermion phenomena.
- We can derive a Density of States (DOS) from γ . From the γ values of Ni₃In and Ni₃Sn, we find D = 44 eV⁻¹ and 7.6 eV⁻¹ per unit cell respectively (inset)
- This result does not agree with the DOS estimated from DFT. We see a nearly threefold increase for Ni₃In (14 eV⁻¹) and only a 50% increase for Ni₃Sn (4.9 eV⁻¹)

INTERPRETING THE RESULTS: EXPERIMENTAL

- The Kadowaki-Woods ratio is three orders of magnitude larger than those of elemental transition metals
- Closer to heavy fermion metals and correlated oxides
- Indicates enhanced correlation in the electronic states of Ni₃In

THE DFT FLAT BAND

Brillouin Zone for the Kagome Lattice

- From the orbital decomposition of the electronic structure, flat band at the Fermi Level due to the Ni d_{xz}-d_{yz} states
- Band structure has features of the ideal Kagome lattice like symmetry-protected band crossing at near -0.6 eV, with a varying degree of dependence on k_z
- Results from the nature of the underlying d-orbital

TIGHT BINDING AND CONSEQUENCES OF THE FLAT BAND

- The DFT analysis motivates considering Wannier basis states w/. d_{xz} and d_{yz} orbitals (which dominate at the Fermi level)
- Magnetic susceptibility calculation reveals Curie-Weiss behavior (for high T)
- Indicates pre-formation of local magnetic moments, suggestive of emergent heavy fermion behavior

CITATION ANALYSIS

CITATION ANALYSIS

- Paper was published in January 2024
- Has been cited by 23 papers so far

CITATION ANALYSIS

-3-

14 Materials Science Multidisciplinary	8 Physics Condensed Matter	4 Chemistry Multi- disciplinary	4 Nano- science Nano- technology
8 Physics Applied	5 Physics Multidisciplinary	3 Chemistry Physical 2 Multidisciplinary	

	CITATION ANALYSIS
Interorbital antisymmetr generated flat bands on pyrochlore Lattices	Tuning the flat band with in-plane biaxial strain and the emergence of superconductivity in Ni ₃ Sn Hye Jung Kim •, ¹ Min Jae Kim, ¹ Jaekwang Lee •, ¹ Jong Mok Ok, ^{1,*} and Chang-Jong Kang ^{2,†} ¹ Department of Physics, Pusan National University, Busan 46241, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ² Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea ³ O (Received 7 February 2024; revised 7 June 2024; accepted 24 June 2024; published 8 July 2024)
Keyu Zeng & Ziqiang Wang 🖗 🖂	Unveiling the Nontrivial Electronic Structures and Fermi Topology of High-Temperature Kagome Ferrimagnet HoMn ₆ Sn ₆ Bin Wang, Xiang-Fan Huang, Detong Wu, Huakun Zuo,* Meng Wang, Yusheng Hou,* and Bing Shen* Cite This: https://doi.org/10.1021/acs.nanolett.4c04411

